Hochschule Esslingen – University of Applied Sciences

Master Course Design and Development of Automotive and Mech. Engineering			
Module:	4201 – Numerical Methods in CAE	Page 1 of 3	
Semester:	Winter 2019/20	Time: 90 mins	
Remarks:	Notes & documents from the lecture; literature No calculator or other electronic devices allowed		

Name

First name

Matr.-Number

Note: 60 points can be achieved in total.

Exercise 1 (13 points):

We consider Jacobi's method for the linear equation system $\mathbf{A} \cdot \boldsymbol{x} = \boldsymbol{b}$, where

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 8 & 1 \\ 1 & 1 & 1 & 16 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 4 \\ -1 \\ 5 \\ 3 \end{pmatrix}, \qquad \mathbf{x}^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}.$$

- (a) Beginning with $x^{(0)}$, perform one step of Jacobi's method.
- (b) Based on the criterion from the lecture: Can we guarantee that Jacobi's method converges? (Give a *short* answer no lengthy calculations are required here!)
- (c) Compute the iteration matrix for Jacobi's method.
- (d) Use an appropriate pair of matrix and vector norms and the result from the previous exercise parts to write down an *à priori* estimate for Jacobi's method.
- (e) After 10 steps of Jacobi's method you obtain

$$\| \boldsymbol{x}^{(10)} - \boldsymbol{x}^{(9)} \|_1 < \frac{9}{250}, \qquad \| \boldsymbol{x}^{(10)} - \boldsymbol{x}^{(9)} \|_2 < \frac{21}{1000}, \qquad \| \boldsymbol{x}^{(10)} - \boldsymbol{x}^{(9)} \|_{\infty} < \frac{1}{50}$$

What can you say about the accuracy of $\boldsymbol{x}^{(10)}$?

(f) According to exercise part (d), Jacobi's method converges. Is this a contradiction to exercise part (b)? (Give a *short* argument.)

Module:	4201 – Numerical Methods in CAE	Page 2 of 3
Semester:	Winter 2019/20	Time: 90 mins

Exercise 2 (7 points):

(a) Compute the Taylor polynomial p_2 of degree 2 with center point $x_0 = 0$ for

$$f(x) := \exp\left(-\frac{\sin(x)}{2}\right).$$

(b) Use the result of exercise part (a) to compute an approximation for

$$I := \int_0^2 f(x) \, dx \, .$$

Exercise 3 (14 points):

We extend the function

$$f_0(t) := \begin{cases} 0, & t \in \left[-\pi, -\frac{\pi}{2}\right), \\ -1, & t \in \left[-\frac{\pi}{2}, 0\right), \\ +1, & t \in \left[0, +\frac{\pi}{2}\right), \\ 0, & t \in \left[+\frac{\pi}{2}, +\pi\right) \end{cases}$$

 2π -periodically to a function f.

- (a) Sketch the graph of f in the interval $[-2\pi, 2\pi]$.
- (b) Considering the function f: Which properties do you expect the complex Fourier coefficients c_k should have?
- (c) Compute the complex Fourier coefficients c_k , $k \in \mathbb{Z}$. Give a general form and write down the values for c_k for $-3 \leq k \leq +3$ explicitly.
- (d) Write down the Fourier polynomial T_3 of f.
- (e) What are the values $T_f(t)$ of the Fourier series at t = 0, $t = \pi/4$ and $t = \pi/2$?

Module:	4201 – Numerical Methods in CAE	Page 3 of 3
Semester:	Winter 2019/20	Time: 90 mins

Exercise 4 (12 points):

We want to solve the initial value problem

$$\begin{cases} y'(t) &= \frac{t}{y(t) - 1} \\ y(0) &= 2 \end{cases}$$

using the 3^{rd} -order Runge Kutta method which is defined by the Butcher table depicted to the right and step size h.

- (a) Compute the approximation w_1 for the exact solution $y(t_1)$ after the first step. Also write down t_1 as a function of h.
- (b) Determine the Taylor series of w_1 with center point 0. *Hint:* Use the geometric series and an appropriate substitution.
- (c) Use the results form the previous exercise parts in order to write down all the terms of the Taylor series with center point 0 of the exact solution y(t) which are meaningful.

Exercise 5 (14 points):

In order to determine an approximation for $x^* := \sqrt[3]{2}$ we apply Newton's method to the function

$$f(x) := x^3 - 2$$
.

(a) Beginning with $x_0 := 2$, perform one step of Newton's method in order to compute the approximation x_1 .

For the iteration function F and its derivative we have

$$F(x) = \frac{2}{3} \left(x + \frac{1}{x^2} \right)$$

$$F'(x) = \frac{2}{3} \left(1 - \frac{2}{x^3} \right)$$

(b) Show that F is contracting on [1, 2].

Hint: Compute the extremal values of F; you may use the information from the graph of F which is depicted above.

- (c) How many steps of Newton's method do you need at most in order to achieve an approximation x_m for which $|x_m - \sqrt[3]{2}| \leq 10^{-4}$ holds? (Use $\lg(2) \approx 0.3$, $\lg(3) \approx 0.5$.)
- (d) Show that, beginning with $x_0 = 2$, Newton's method converges quadratically to $\sqrt[3]{2}$.
- (e) Suppose you have computed an approximation x_m with $|x_m \sqrt[3]{2}| \leq 10^{-4}$. What can you say about the accuracy of the next two approximations x_{m+1}, x_{m+2} ?



