Hochschule Esslingen – University of Applied Sciences

Master Co	Aaster Course Design and Development of Automotive and Mech. Engineering		
Module:	Numerical Methods in CAE	Page 1 of 3	
Semester:	Winter 2018/19	Time: 90 mins	
Remarks:	Notes & documents from the lecture; literature No calculator or other electronic devices allowed		

Name

First name

Matr.-Number

Note: 60 points can be achieved in total.

Exercise 1 (7 points):

We want to determine an intersection point of the curves

 $x^4 + (y-1)^4 = 1$ and $(x-2)^2 + y^2 = 3$.

- (a) Rewrite the problem in the form f(x, y) = 0 for a function $f: \mathbb{R}^2 \to \mathbb{R}^2$.
- (b) Starting with $(x_0, y_0) = (0, 0)$, perform two steps of Newton's method in order to obtain approximations (x_1, y_1) and (x_2, y_2) for one of the zeros of \boldsymbol{f} . For both steps, use the Jacobian \mathbf{J}_f at the point (x_0, y_0) .

Exercise 2 (11 points):

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} a & 1 & 0 & 0 \\ 1 & a & 1 & 0 \\ 0 & 1 & a & 1 \\ 0 & 0 & 1 & a \end{pmatrix},$$

where a is a real parameter.

(a) For which values of a is A is strictly row diagonal dominant?

Let a = 3. Furthermore, assume that after having performed k steps of Jacobi's method for solving the LES $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, the last two approximations $\mathbf{x}^{(k)}, \mathbf{x}^{(k-1)}$ meet the estimate

 $\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}\|_{\infty} \leq 10^{-5}.$

- (b) What do you know about the accuracy of $x^{(k)}$?
- (c) How many additional steps do you need at most until the accuracy of the approximation is better than 10^{-6} ?

Hint: Use $lg(2) \approx 0.3$, $lg(3) \approx 0.5$

Module:	Numerical Methods in CAE	Page 2 of 3
Semester:	Winter 2018/19	Time: 90 mins

Exercise 3 (15 points):

The complex Fourier coefficients of

$$f(x) := \begin{cases} 0, & -\pi < x \leq 0 \\ x, & 0 < x \leq \pi \end{cases}$$

(extended to a 2π -periodic function) are given by

$$c_0 = \frac{\pi}{4}, \qquad c_k = \frac{(-1)^k - 1}{2\pi k^2} + j \frac{(-1)^k}{2k}, \qquad k \in \mathbb{Z}^*.$$

- (a) Sketch the pointers of $c_0, c_{\pm 1}$ and $c_{\pm 2}$ in the complex plane (use $\pi \approx 3$).
- (b) Use c_k to compute the real Fourier coefficients a_k, b_k .
- (c) Use the above exercise parts in order to determine the real Fourier coefficients for the functions g and h, the graphs of which are depicted below.

Write down the real Fourier series for g and h up to order k = 2 inclusively.



 $\mathit{Hint:}$ How are the relations between f,g and g,h, respectively ?

Module:	Numerical Methods in CAE	Page 3 of 3

Semester: Winter 2018/19

Exercise 4 (15 points):

We want to determine an approximation for the integral

$$I := \int_0^{\pi/2} \frac{d\varphi}{\sqrt{1 - \frac{1}{2}\sin^2(\varphi)}} \,.$$

(a) Compute the Taylor polynomial p_2 at $x_0 = 0$ and Lagrange's remainder term R_2 for

$$f(x) = \frac{1}{\sqrt{1-x}}.$$

- (b) Use p_2 of exercise part (a) and the integrals below in order to determine an approximation \tilde{I} for the integral I.
- (c) Show that for $0 \le x \le 1/2$ Lagrange's remainder term R_2 of exercise part (a) meets the estimate

$$\frac{5}{16}x^3 \leqslant R_2(x) \leqslant \frac{5\sqrt{2}}{2}x^3.$$

(d) Use the right estimate (estimate for R_2 from above) of exercise part (c) for a statement on the accuracy of the approximation \tilde{I} .

Hint:
$$\int_0^{\pi/2} \sin^2(\varphi) \, d\varphi = \frac{\pi}{4}, \qquad \int_0^{\pi/2} \sin^4(\varphi) \, d\varphi = \frac{3\pi}{16}, \qquad \int_0^{\pi/2} \sin^6(\varphi) \, d\varphi = \frac{5\pi}{32}$$

Exercise 5 (12 points):

We consider the initial value problem (IVP)

$$\begin{cases} y'(t) = t + y(t) & \overline{3} & \overline{3} \\ y(1) = -1 & \underline{2} & 0 & \underline{2} \\ \end{array}$$

and the Runge Kutta method which is defined by the Butcher table to the right.

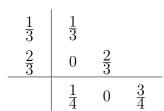
- (a) Which is the maximal order this Runge Kutta method could have?
- (b) Compute the approximation w_1 for the exact value $y(t_1)$ of the solution of the IVP for an arbitrary step size h > 0. Also write down t_1 as a function of h.
- (c) The exact solution of the IVP reads

 $y(t) = e^{t-1} - (t+1).$

Write down the Taylor series for y with center point $t_0 = 1$. *Hint:* Use

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

(d) Let \tilde{w}_1 be the approximation to $y(t_1)$ which is obtained from the classical 4^{th} -order Runge Kutta method. Use the previous exercise parts in order to write down \tilde{w}_1 .



Time: 90 mins