Num. Methods in $CAE - WS \ 16/17 - Short$ solutions

Exercise 1 (9 points):

(a) $(x_1, y_1) = (16/9, 1)$ (b) $(x_1, y_1) = \frac{1}{2a}(0, 1+a^2)$. Hence $x_1 = x_2 = \ldots = 0$ and $x^* = 0$

Exercise 2 (20 points):

(a) $det(\mathbf{A}) \neq 0$

- (b) A is strictly row diagonal dominant
- (c) $\boldsymbol{x}^{(1)} = (1/2, 5/2, 15/4)$

(d)
$$n = 14$$

(e) Worse since we can not guarantee the convergence of the SD-method.

Exercise 3 (14 points):

(a)
$$c_0 = \frac{p\pi^2}{6}$$
, $c_1 = -p + jp\left(-\frac{\pi}{2} + \frac{2}{\pi}\right)$, $c_{-1} = c_1^*$, $c_2 = \frac{p}{4} + j\frac{p\pi}{4}$, $c_{-2} = c_2^*$

(b) f_p is neither even nor odd and has jump discontinuities.

(c)
$$c_{-k} = c_k^*$$

(d) $a_0 = \frac{p\pi^2}{3}$, $a_k = \frac{2p}{k^2} (-1)^k$, $b_k = -p \left(\pi \frac{(-1)^k}{k} + 2 \frac{1 - (-1)^k}{\pi k^3} \right)$, $k \in \mathbb{N}$
(e) $p = \frac{6}{\pi^2}$

(f)
$$S_{2,g}(t) = \frac{\pi^2}{6} - 2\cos(4t) + (\pi - \frac{4}{\pi})\sin(4t) + \frac{1}{2}\cos(8t) - \frac{\pi}{2}\sin(8t)$$

Exercise 4 (14 points):

(a) $p_3(t) = 1 + 2t - t^2 + \frac{4}{3}t^3$

(b)
$$w_1 = 1 + \frac{h(2+3h)}{(1+h)^2}$$

(c) $\tilde{p}_3(h) = 1 + 2h - h^2 (+ 0h^3)$