Num. Methods in $CAE - WS \ 15/16 - Short$ solutions

Exercise 1 (11 points):

(a) $a_{11} > 0$, $a_{22} > 0$, $a_{32} = -1$, $a_{33} > \frac{a_{11} + a_{22}}{a_{11}a_{22}}$; $b \in \mathbb{R}$ (b) $\boldsymbol{x}^{(1)} = (1.0, 1.5, 0.5)$

Exercise 2 (6 points):

(a) $t_1 = h$, $w_1 = 2 - 2h - h^2 + h^3$ (b) $a_0 = 2$, $a_1 = -2$, $a_2 = -1$ (c) 5 terms

Exercise 3 (11 points):

(a)
$$c_0 = \frac{\pi^2}{6}$$
, $c_k = \frac{(-1)^k}{k^2} + j\left(\frac{\pi}{2}\frac{(-1)^k}{k} + \frac{1 - (-1)^k}{\pi k^3}\right)$
(b) $a_0 = \frac{\pi^2}{3}$, $a_k = 2\frac{(-1)^k}{k^2}$, $b_k = -\pi\frac{(-1)^k}{k} - 2\frac{1 - (-1)^k}{\pi k^3}$, $k \in \mathbb{N}$
(c) $S_2(x) = \frac{\pi^2}{6} - 2\cos(x) + \left(\pi - \frac{4}{\pi}\right)\sin(x) + \frac{1}{2}\cos(2x) - \frac{\pi}{2}\sin(2x)$

Exercise 4 (15 points):

- (a) $p_2(x) = 2 + \frac{1}{4}(x-5) \frac{1}{64}(x-5)^2$
- (b) $\sqrt{6} \approx 39/16$
- (c) $\sqrt{6} \in \left[\frac{39}{16}, \frac{39}{16} + \frac{1}{64} \right]$

Exercise 5 (10 points):

- (a) f is convex for x > 0, and for $x_0 = a$ we have $x_0 > \sqrt[7]{a}$. Depicting some tangents shows that $x_0 > x_1 > x_2 > \ldots > \sqrt[7]{a}$. Since $\{x_n\}$ is bounded and strictly monotonically decreasing, it must converge.
- (b) $x^* = \sqrt[7]{a}$ has multiplicity 1.

(c)
$$F(x) = \frac{6x^7 + a}{7x^6}$$
, $F'(x) = \frac{6}{7}\left(1 - \frac{a}{x^7}\right)$, $F''(x) = \frac{6a}{x^8}$

(d)
$$|x_{n+1} - x^*| \leq 3 |x_n - x^*|^2;$$

 $|x_{n+1} - x^*| < 3 \cdot 10^{-6}, \qquad |x_{n+2} - x^*| < 2.7 \cdot 10^{-11}$