Hochschule Esslingen – University of Applied Sciences

Master Co	Master Course Design and Development of Automotive and Mech. Engineering		
Module:	Numerical Methods in CAE	Page 1 of 2	
Semester:	Winter 2015/16	Time: 90 mins	
Remarks:	ks: Notes & documents from the lecture and 10 pages of personal notes allowed No calculator or other electronic devices allowed		

Name

First name

Matr.-Number

Note: 53 points can be achieved in total.

Exercise 1 (11 points):

We consider the linear equation system $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & 1 \\ 0 & a_{22} & -1 \\ 1 & a_{32} & a_{33} \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix};$$

herein, $a_{ij}, b \in \mathbb{R}$ are real parameters.

- (a) For which values of a_{ij} , b can we guarantee that the method of the steepest descent (SD) converges? *Hint:* Sylvester's criterion.
- (b) Use $a_{11} = a_{22} = b = 1$, $a_{32} = -1$ and $a_{33} = 5$. Beginning with $\boldsymbol{x}^{(0)} = (1, 2, 0)$ perform one step of the SD method in order to obtain an approximation $\boldsymbol{x}^{(1)}$ to the exact solution of the LES.

Exercise 2 (6 points):

We consider the initial value problem

$$y'(t) = -(1+2t) \cdot y(t), \quad y(0) = 2$$

- (a) Perform one step with the midpoint rule and step size h in order to determine an approximation w_1 for the value y(h) of the exact solution.
- (b) y(h) can be represented by a Taylor series with center point 0 it then reads

$$y(h) = a_0 + a_1 h + a_2 h^2 + a_3 h^3 + a_4 h^4 + \dots, \qquad a_k \in \mathbb{R} \quad \forall k \in \mathbb{N}_0$$

Use the result from exercise part (a) in order to determine the values for as many coefficients a_k as possible.

(c) How many coefficients could you determine if you had performed a step with the classical 4th-order Runge-Kutta method instead of the midpoint rule? (Give the number and a short argument – no calculation is required!)

Module:	Numerical Methods in CAE	Page 2 of 2 $$
Semester:	Winter 2015/16	Time: 90 mins

Exercise 3 (11 points):

We consider the function

$$f(x) := \begin{cases} 0, & -\pi < x \leq 0 \\ x^2, & 0 < x \leq \pi \end{cases}$$

which is extended to a 2π -periodic function.

(a) Compute the complex Fourier coefficients $c_k, k \in \mathbb{Z}$ for f. Use

$$\int x^2 e^{ax} dx = \frac{1}{a^3} (a^2 x^2 - 2ax + 2) e^{ax} + C$$

- (b) Use the c_k to compute the real Fourier coefficients a_k, b_k for f.
- (c) Write down the real Fourier series of f up to terms of order k = 2 inclusively.

Exercise 4 (15 points):

- (a) Compute the Taylor polynomial p_2 of degree 2 at $x_0 = 5$ for $f(x) = \sqrt{x-1}$.
- (b) Use the result of exercise part (a) to determine an approximation for $\sqrt{6}$. *Hint:* For which $x \in \mathbb{R}$ is $f(x) = \sqrt{6}$?
- (c) Use the remainder term R_2 of Lagrange in order to obtain an accuracy statement for the approximation of exercise part (b); i.e. determine an interval I such that $\sqrt{6} \in I$.

Exercise 5 (10 points):

In order to determine an approximation to $x^* := \sqrt[7]{a}$ (where a > 1) we apply Newton's method to the function

 $f(x) := x^7 - a$.

- (a) Sketch the graph of f for x > 0 and give a geometrical argument that Newtons method converges to x^* if we start with $x_0 := a$.
- (b) Give an argument that Newton's method converges quadratically to x^* .
- (c) Compute the iteration function F as well as F' and F''.

Hint: Using $F'(x) = \frac{f(x)f''(x)}{f'(x)^2}$ saves time.

(d) Suppose you have computed an approximation x_n with $|x_n - x^*| < 10^{-3}$. Use the quadratic convergence and the above exercise parts in order to give an estimate for the accuracy of x_{n+1} and x_{n+2} .

Hint: The desired formula must *not* depend on *a*. The estimate $\sqrt[7]{a} > 1$ may be helpful.