Hochschule Esslingen – University of Applied Sciences

Master Course Design and Development of Automotive and Mech. Engineering			
Module:	Numerical Methods in CAE	Page 1 of 2	
Semester:	Winter 2014/15	Time: 90 mins	
Remarks:	Notes & documents from the lecture and 10 pages of personal notes allowed No calculator or other electronic devices allowed		

Name

First name

Matr.-Number

Note: 53 points can be achieved in total.

Exercise 1 (9 points):

We consider the linear equation system $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 6 & -1 \\ 0 & -1 & 5 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix}.$$

- (a) Show that the solution of this LES is unique. (It is *not* required to compute the exact solution!)
- (b) Can we guarantee that Jacobi's method for solving the LES converges?
- (c) Can we also guarantee that the method of the steepest descend converges?
- (d) Beginning with $\boldsymbol{x}^{(0)} = (1, 2, 0)$ perform one step of Jacobi's method in order to obtain an approximation $\boldsymbol{x}^{(1)}$ to the exact solution of the LES.

Exercise 2 (12 points):

We consider the function

 $f(t) := e^{-|t|}, \quad t \in [-\pi, \pi)$ and extended 2π -periodically,

and we denote the complex Fourier series of f by

$$T_f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jkt}.$$

- (a) Name two properties which you expect the complex Fourier coefficients c_k should have. (Do *not* compute anything but just investigate f.)
- (b) Compute the complex Fourier coefficients c_k , $k \in \mathbb{Z}$.
- (c) Use c_k to compute the real Fourier coefficients a_k, b_k . Write down the real Fourier series of f up to terms of order k = 2 inclusively.
- (d) What is the mean value of f?

Module:	Numerical Methods in CAE	Page 2 of 2

Semester: Winter 2014/15

Exercise 3 (16 points):

In order to determine the intersection point of the curves $y = e^{-x}$ and y = x we apply Newton's method to the function

 $f(x) := x - e^{-x};$

as initial estimate we choose $x_0 = 0$.

- (a) Show that f has exactly one zero x^* , i.e. that the curves intersect exactly once. Show that $x^* \in (0, 1)$.
- (b) Perform one step of Newton's method in order to obtain an approximation x_1 for x^* .
- (c) Show that Newton's method converges. Proceed as follows:
 - Compute the iteration function F and simplify the function term such that it contains only e^x , but not e^{-x} .
 - Show that F is contracting on the interval [0, 1].
 - You may assume that F' is strictly monotonically decreasing on [0,1]. Use this in order to obtain a suitable estimate for

$$L = \max\{|F'(x)| : x \in [0,1]\}.$$

- (d) Show that Newton's method converges quadratically to x^* .
- (e) Show that after performing three steps of Newton's method we have $|x_3 x^*| < 10^{-4}$. *Hint:* Do *not* compute x_3 , but use

 $\max\{|F''(x)|: x \in [0,1]\} \leq \frac{1}{2}.$

Exercise 4 (16 points):

We want to solve the initial value problem

$$\begin{cases} y'(t) = \frac{1}{t+y(t)} \\ y(1) = 0 \end{cases}$$

using the 3^{rd} -order Runge Kutta method which is defined by the Butcher table depicted to the right and step size h.

- (a) Compute the approximation w_1 for the exact solution $y(t_1)$ after the first step. Also write down t_1 as a function of h.
- (b) $w_1 = w_1(h)$ is a function of h. How many terms of the Taylor series for w_1 with center point h = 0 are meaningful, considering the properties of the Runge Kutta method with which w_1 was derived? Compute the Taylor polynomial of w_1 with the respective degree. *Hint:* Geometric series, Cauchy product.
- (c) Write down as many terms of the Taylor series with center point 1 of the exact solution y(t) as you know from the result of exercise part (b).

