Exercise 1 (9 points):

- (a) Yes, since A is symmetric and positive definite (Sylvester's criterion or investigation of the sign of the eigenvalues).
- **(b)** $\boldsymbol{x}^{(1)} = \left(-\frac{7}{9}, \frac{2}{9}, 1\right)$

Exercise 2 (14 points):

(a)
$$Y^{(2)}(1+h) = h + \frac{h^2}{2}$$
, $Y^{(3)}(1+h) = h + \frac{h^2}{2} + \frac{h^3}{6}$; $t_1 = 1+h$
(b) $y(t) = (t-1) + \frac{(t-1)^2}{2} + \frac{(t-1)^3}{6}$
(c) $h \in \left[2.5 \cdot 10^{-3} , 7.5 \cdot 10^{-3} \right]$

Exercise 3 (5 points):

$$(x_1, y_1) = (1.1, 0.8)$$

Exercise 4 (9 points):

(a) $e^{-x^2/2} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k \cdot k!} \cdot x^{2k}$ (b) $I = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k \cdot k!}$

(b)
$$I = \sum_{k=0}^{\infty} \frac{1}{2^k \cdot k! \cdot (2k+1)}$$

(c) 3 terms (Leibniz' criterion), $I \approx \frac{103}{120}$

Exercise 5 (15 points):

(a)
$$c_0 = -\frac{\pi}{4}$$
, $c_k = \begin{cases} -\frac{j}{2k} + \frac{1}{\pi k^2}, & k = \pm 1, \pm 3, \dots \\ \frac{j}{2k}, & k = \pm 2, \pm 4, \dots \end{cases}$

(b)
$$a_0 = -\frac{\pi}{2}$$
, $a_k = \begin{cases} \frac{2}{\pi k^2}, & k \text{ odd} \\ 0, & k \text{ even} \end{cases}$ $b_k = \begin{cases} \frac{1}{k}, & k \text{ odd} \\ -\frac{1}{k}, & k \text{ even} \end{cases}$
 $T_f(t) = -\frac{\pi}{4} + \frac{2}{\pi} \cos(t) + \sin(t) - \frac{1}{2}\sin(2t) \pm \dots$
(c) $\overline{f} = -\frac{\pi}{4}$