Hochschule Esslingen - University of Applied Sciences

Master Course Design and Development of Automotive and Mech. Engineering				
Module:	Numerical Methods in CAE	Page 1 of 2		
Semester:	Winter 2013/14	Time: 90 mins		
Remarks:	arks: Notes & documents from the lecture and 10 pages of personal notes allowed No calculator or other electronic devices allowed			

Name	First name	MatrNumber

Note: 52 points can be achieved in total.

Exercise 1 (9 points):

We consider the linear equation system $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ with

$$\mathbf{A} \ = \ \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \,, \qquad \boldsymbol{b} \ = \ \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \,.$$

- (a) Can we guarantee that the method of the steepest descend (SD) converges?
- (b) Beginning with $\mathbf{x}^{(0)} = (-1, 0, 1)$ perform one step of the SD method in order to obtain an approximation $\mathbf{x}^{(1)}$ to the exact solution of the LES.

Exercise 2 (14 points):

We want to solve the initial value problem

$$\begin{cases} y'(t) &= 1 + y(t) \\ y(1) &= 0 \end{cases}$$

using the embedded midpoint rule which is defined by the Butcher table depicted to the right and step size h.

Recall that the embedded midpoint rule consists of a 2^{nd} -order and a 3^{rd} -order Runge-Kutta method.

$\frac{1}{2}$	$\frac{1}{2}$		
1	-1	2	
	0	1	
	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$
	, ,	9	Ü

- (a) Compute the values $Y^{(2)}(t_1)$ and $Y^{(3)}(t_1)$ as functions of h which the two Runge-Kutta methods yield for the approximation of the exact solution $y(t_1)$ after the first step. Also write down t_1 as a function of h.
- (b) Write down as many terms of the Taylor series with center point 1 of the exact solution y(t) as you know from the results of exercise part (a).
- (c) Suppose we are given a tolerance $\varepsilon=10^{-5}$. How do we have to choose h such that it is accepted for the first step? (Use $\sqrt{6}\approx 2.5,\ \sqrt{10}\approx 3.$)

Module:	Numerical Methods in CAE	Page 2 of 2
Semester:	Winter 2013/14	Time: 90 mins

Exercise 3 (5 points):

Consider the function

$$\boldsymbol{f}(x,y) := \begin{pmatrix} x^2 - y^3 \\ x^2 + y^2 - 1 \end{pmatrix}.$$

Starting with $(x_0, y_0) = (2, 1)$, perform one step of Newton's method in order to obtain an approximation (x_1, y_1) for one of the zeros of \mathbf{f} .

Exercise 4 (9 points):

(a) Compute the Taylor series at $x_0 = 0$ for

$$f(x) = e^{-x^2/2}$$
.

You may use the Taylor series $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$.

(b) Use the result of exercise part (a) to determine a series for

$$I := \int_0^1 f(x) \, dx$$
.

(c) How many terms of the series for I do we have to sum up in order to get an approximation which differs by no more than 10^{-2} from the exact value?

Compute the respective approximation.

Exercise 5 (15 points):

We consider the function

$$f(t) := \begin{cases} t, & t \in [-\pi, 0), \\ 0, & t \in [0, \pi) \end{cases}$$
 and extended 2π -periodically.

- (a) Compute the complex Fourier coefficients c_k , $k \in \mathbb{Z}$ of the Fourier series of f.
- (b) Use c_k to compute the real Fourier coefficients a_k, b_k . Write down the real Fourier series of f up to terms of order k = 2 inclusively.
- (c) What is the mean value of f?