HOCHSCHULE ESSLINGEN

Wintersemester 2019/20		Blatt 1 von 2	
Studiengänge:	alle	Sem. 3 und höhere	
Prüfungsfach:	Fortgeschrittene Themen	Fachnummern: 8922, 8000029, 8000044	
Hilfsmittel:	Literatur, Manuskript; keine Taschenrechner und sonstige elektronische Hilfsmittel	Zeit: 45 min	
Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt!			

Maximale Punktzahl: 25

Aufgabe 1 (Anfangswertprobleme – 4 Punkte):

Gegeben ist das Anfangswertproblem

$$y' = \frac{t+2}{2y-1}, \qquad y(0) = 1.$$

Führen Sie einen Schritt mit der Mittelpunktsregel und Schrittweite h aus, um einen Näherungswert für y(h) zu erhalten.

Aufgabe 2 (Reihen – 6 Punkte):

(a) Untersuchen Sie das Konvergenzverhalten der folgenden Reihen:

(a₁)
$$\sum_{k=1}^{\infty} \frac{1}{2^k + k}$$
 (a₂) $\sum_{k=1}^{\infty} (1 + 10^{-k})$

(b) Begründen Sie, warum Sie zur Untersuchung der folgenden Reihe das Leibniz-Kriterium verwenden können. Berechnen Sie dann für die Reihensumme einen Näherungswert, der um nicht mehr als 10^{-2} vom exakten Wert abweicht:

$$\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{4^k}$$

Aufgabe 3 (Reihen – 7 Punkte):

- (a) Berechnen Sie das Taylorpolynom zweiten Grades mit Entwicklungspunkt $x_0=\pi/2$ für $f(x):=e^{-\cos(x)}$.
- (b) Berechnen Sie mit Hilfe von Aufgabenteil (a) einen Näherungswert für

$$I := \int_{\pi/2}^{\pi} e^{-\cos(x)} dx$$
.

Wintersemester 2019/20		Blatt 2 von 2
Studiengänge:	alle	Sem. 3 und höhere
Prüfungsfach:	Fortgeschrittene Themen	Fachnummern: 8922, 8000029, 8000044
Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt!		

Aufgabe 4 (Fourierreihen – 8 Punkte):

Die Funktion

$$f_0(x) := \begin{cases} 0, & x \in \left[-\pi, -\frac{\pi}{2}\right), \\ -1, & x \in \left[-\frac{\pi}{2}, 0\right), \\ +1, & x \in \left[0, +\frac{\pi}{2}\right), \\ 0, & x \in \left[+\frac{\pi}{2}, +\pi\right) \end{cases}$$

wird zu einer 2π -periodischen Funktion f fortgesetzt.

- (a) Skizzieren Sie das Schaubild von f im Intervall $[-2\pi, 2\pi]$.
- (b) Welche Eigenschaften der Fourierkoeffizienten können Sie ohne Rechnung angeben (jeweils kurze Begründung)?
- (c) Berechnen Sie die Fourierkoeffizienten a_k, b_k . Verlangt sind eine allgemeine Formel sowie explizit die Werte der Koeffizienten bis k = 5 einschließlich.
- (d) Schreiben Sie das Fourierpolynom 5. Grades von f auf.