HOCHSCHULE ESSLINGEN

Sommersemester 2015		Blatt 1 von 2	
Studiengänge:	alle	Sem. 3 und höhere	
Prüfungsfach:	Mathematische Methoden	Fachnummern: 8881, 8882	
Hilfsmittel:	Literatur, Manuskript; keine Taschenrechner und sonstige elektronische Hilfsmittel	Zeit: 45 min	
Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt!			

Maximale Punktzahl: 26+3

Aufgabe 1 (Reihen - 7 Punkte):

(a) Untersuchen Sie, ob die folgende Reihe konvergiert:

$$\sum_{k=0}^{\infty} \frac{\cos(k)}{0.5^k + 1.5^k}$$

(b) Bestimmen Sie das Konvergenzintervall der Potenzreihe

$$\sum_{k=0}^{\infty} \frac{2^k}{k^2 + 1} \left(\frac{x}{6} - \frac{1}{2} \right)^k.$$

Untersuchen Sie auch die Randpunkte. *Hinweis:* Die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^2}$ ist konvergent.

Aufgabe 2 (Fourierreihen – 9 Punkte):

Die Funktion

$$f_0(t) := t^2, \qquad t \in [-1, 1);$$

wird zu einer Funktion f mit der Periode T=2 fortgesetzt.

- (a) Was kann man über die Fourierkoeffizienten a_k, b_k sagen, ohne zu rechnen?
- (b) Berechnen Sie die Fourierkoeffizienten a_k, b_k (Integrale s.u.).
- (c) Schreiben Sie das Fourierpolynom vom Grad n=3 für f auf.
- (d) Geben Sie den Mittelwert von f an.

Hinweis:

$$\int t^2 \sin(at) dt = \frac{2t}{a^2} \sin(at) + \frac{2 - (at)^2}{a^3} \cos(at) + C,$$

$$\int t^2 \cos(at) dt = \frac{2t}{a^2} \cos(at) - \frac{2 - (at)^2}{a^3} \sin(at) + C.$$

Sommersemester 2015		Blatt 2 von 2	
Studiengänge:	alle	Sem. 3 und höhere	
Prüfungsfach:	Mathematische Methoden	Fachnummern: 8881, 8882	
Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt!			

Aufgabe 3 (Differentialgleichungen, Reihen – 10+3 Punkte):

Gegeben ist das Anfangswertproblem

$$y' = \frac{1-y}{x}, \quad y(1) = 0.$$

- (a) Zeichnen Sie die ersten beiden Schritte der Mittelpunktsregel in das unten dargestellte Richtungsfeld der Differentialgleichung ein; wählen Sie die Schrittweite h = 1.
- (b) Führen Sie rechnerisch einen Schritt der Mittelpunktsregel für allgemeine Schrittweite h>0 aus, um den Näherungswert y_1 für $y(x_1)$ zu bestimmen.

Zwischenergebnis: $y_1 = h \frac{2-h}{2+h}$

(c) Stellen Sie y_1 als Taylorreihe mit Entwicklungspunkt 0 dar. *Hinweis:* Geometrische Reihe, Cauchyprodukt.

Bonusaufgabe: Was kann man aufgrund der Eigenschaften der Mittelpunktsregel über die Taylorreihe von $y(x_1)$ mit Entwicklungspunkt x_0 sagen?

