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Abstract

Standard Ethernet is on the march in industrial environments to interconnect de-
vices like industrial robots. Thanks to Time-Sensitive Networking (TSN), Ethernet
can guarantee the deterministic and real-time transmission of packets as it is possi-
ble with the previously used bus systems. With the emergence of Industry 4.0 and
cloud computing, the interconnection between industrial devices and controllers is
continuously growing, leading to an increased network size.

On the other hand, the number of cyberattacks on companies is increasing. As a
consequence, companies should pay particular attention to network security. Fire-
walls are one essential building block of network security. They are placed between
two subnetworks to block traffic that is not explicitly allowed between the sub-
networks. Unfortunately, firewalls, especially software firewalls, introduce a high
latency and high jitter to packet forwarding. Such non-deterministic behavior is
unacceptable when using TSN.

In this thesis, we propose three ideas that aim to reduce the latency and jitter
of software firewalls to make them suitable for TSN. We implement these ideas into
FD.io VPP, an existing high-performance software firewall. After that, we analyze
our implementation regarding latency and jitter to evaluate whether the ideas are
suitable for TSN.
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1 Introduction

Traditionally, networks in industrial environments consist of multiple parallel net-
works. Each network transmits data for different applications. Some networks trans-
mit time-critical data, for example, for control industrial robots. Other networks,
on the other hand, transmit general-purpose data, such as monitoring information.
Thanks to the combination of standard Ethernet and Time-Sensitive Networking
(TSN), these networks converge into one single network nowadays. TSN is part
of the IEEE 802.1 standards. It is a mechanism that reduces the latency and the
variation in latency (jitter) of time-critical packets. In other words, TSN enables
time-deterministic forwarding of packets in converged networks. Converged networks
enable interconnecting different industrial devices, leading the way to Industry 4.0.
Furthermore, additional infrastructure from the cloud integrates into the network
to make the plant more intelligent and flexible.

However, an increasing network size and additional (cloud) services connected to
the network increase the number of vulnerable points. To make an intruder’s life
harder, the network is segmented into multiple zones between which firewalls are
placed. The firewalls block all packets that are not allowed by the policy. The
policy itself is defined by an administrator and only allows packets that need to pass
to the other zone.

Imagine two devices, A and B, within the same zone exchanging control infor-
mation. An intruder in another zone can manipulate device A by sending fake
information. Even if device A filters incoming packets by the source IP address, the
intruder can spoof the source IP address. Then, the packet looks like it originated
from device B. A firewall prevents such an attack by blocking all packets that are
not explicitely allowed. As packets from device B should not be allowed to arrive
from other zones, the firewall protects device A from the above attack.

However, combining firewalls and TSN is currently a challenge because there
are, to the best of our knowledge, currently no TSN-capable firewalls available.
Wüsteney et al. [1] evaluated the filtering performance of firewalls regarding latency.
They compared firewalls filtering in hardware with firewalls filtering in software.
According to them, firewalls with hardware filtering satisfy the latency constraints
of TSN, whereas firewalls filtering in software do not satisfy the latency constraints.
However, using firewalls with hardware filtering in combination with TSN is not
always a solution. They have disadvantages like less flexible rules (no support for
stateful traffic) and limit the total number of filtering rules.

Because of these limitations, our goal is to modify FD.io VPP, an existing high-
performance software firewall with software filtering, to satisfy the latency con-
straints of TSN. We propose three ideas, timebound, passive, and priority that we
implement into the firewall. Furthermore, we measure and evaluate the performance
of the modified firewall regarding latency and discuss the security impact.
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2 Motivation

In this chapter, we first explain the challenges in industrial environments. Based on
these challenges, we define our goals for the modified firewall regarding latency and
jitter. Then, we explain the reasons for high latency and jitter of software firewalls.
All this knowledge helps us to introduce our ideas to reduce the latency and jitter
on software firewalls at the end of this chapter.

2.1 Challenges in industrial environments
The transmission of time-critical packets (in the following called high-priority pack-
ets) follows a strict schedule in industrial environments. TSN reserves recurring time
slots on a forwarding device, like a switch, to transmit high-priority packets. Dur-
ing this time, the switch interrupts the transmission of other packets (non-priority
packets). Thus, high-priority packets do not have to wait for other packets when
they arrive at the switch. A waiting time is not tolerable for high-priority packets
because it increases the latency and the jitter.

There are different types of high-priority traffic in TSN networks. Based on re-
quirements contributions to the IEC/IEEE 60802 [2] and Wüsteney et al. [1], we
distinguish three different types:

Isochronous traffic Isochronous traffic is cyclic, or in other words, the packets
repeat in fixed intervals. The cycle times (intervals) are short, usually between 1 µs
and 1 ms. Additionally, a switch must delay isochronous traffic by not more than
3 µs. Packet loss is not allowed. An example use case are synchronized motion
applications.

Cyclic traffic The requirements of cyclic traffic are less strict in comparison to
isochronous traffic. Common cycle times are between 2ms and 20 ms. Moreover,
cyclic traffic weaker requirements on delay and tolerates packet loss.

Acyclic traffic As the name suggests, acyclic traffic does not repeat in intervals.
It occurs spontaneously, for example, caused by events or alarms. There are no re-
quirements regarding the delay. To prevent the loss of event or alarm notifications,
packet loss is not allowed.

The recurring time slots of a TSN switch are long enough that the switch can pro-
cess and transmit the high-priority packet within this time. However, if the network
consists of multiple switches, the time slots must compensate for the jitter caused
by the other switches. We define jitter as the difference between the average latency

4



2 Motivation

and maximum latency and the average latency and minimum latency, respectively.
For example, if the first switch introduces a jitter of 10 µs, the time slot must be
10 µs longer than the average time required to process and transmit the packet. The
reason for this is that the packet can arrive up to 10 µs later at the second switch
due to the jitter. To keep the time slots short, the switches must introduce only a
low jitter. Long time slots decrease the throughput of the switch because the switch
cannot process other packets during this time.

2.2 Goals
As we mentioned in the last section, TSN switches should only introduce a low
jitter to keep the time slots short. Since network segmentation using firewalls plays
an increasing role, we try to achieve the same with our modified firewall. Thus,
our goal in this thesis is to reduce the jitter of the firewall as much as possible so
that the latency is as constant as possible. We aim to meet the requirements of
cyclic traffic and acyclic traffic because isochronous traffic is expected to stay inside
one network. However, the low maximum delay of 3µs for isochronous traffic is
impossible to achieve, as our measurement results in Chapter 7 show.

We do not improve the general packet processing of the firewall in this thesis. We
focus on improving the firewall implementation. Therefore, we chose to modify a
software firewall that already processes packets very fast.

2.3 Impact of software firewalls on latency
In this thesis, we focus on software firewalls. Software firewalls are a firewall subcat-
egory. In contrast to many hardware firewalls, they do not rely on special hardware
like Application-Specific Integrated Circuits (ASICs) or Field-Programmable Gate
Arrays (FPGAs). Instead, software firewalls run on commodity hardware like server
hardware used in data centers or embedded systems. Commodity hardware brings
more flexibility because features are not bound to special hardware with limited
capabilities. For example, if a firewall uses an ASIC to filter packets, the number
of rules and their structure is limited by the capabilities of the ASIC. In contrast,
a general-purpose CPU does not limit the number of rules and their structure.
Furthermore, with software firewalls, there is no dependency on a hardware manu-
facturer and commodity hardware is often cheaper than specialized hardware. On
the other hand, commodity hardware can degrade the performance because it is less
efficient than hardware that is optimized for a special purpose. One task that suf-
fers from performance degradation on commodity hardware are table lookups (e.g.,
a routing table or a table/list with firewall rules). They can be implemented with
a constant-time delay in hardware while the delay varies per lookup on a general-
purpose CPU. In this section, we show how table lookups on software firewalls
influence packet latency.

We start with a brief introduction to firewalls in order to explain why such ta-
ble lookups are required (we give a complete overview of firewalls in Section 3.1).
Firewalls are configured by an administrator who adds a set of rules that determine

5



2 Motivation
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Figure 2.1: Latency for different matching positions (data rate: 1Mbit/s; packet
size: 64B)

whether a packet is allowed to pass through the firewall or whether it is blocked.
Such a set of rules to filter packets is called Access Control List (ACL). A rule con-
sists of fields and an action. The firewall compares the fields against each packet
arriving at the firewall. If all fields match the packet (i.e., the rule matches), the
action defined in the rule is taken. Valid actions are allow (forward the packet to
the destination) and block (drop the packet). If no rule matches, the firewall takes
a default action. In most cases, the default action is to drop the packet.

Software firewalls process ACLs on the CPU. They match the rules in a linear
way, meaning the rules are processed one after another. As a result, the duration to
match the ACL rules is dependent on the number of rules that need to be matched.
This can slow down packet processing drastically.

For example, Figure 2.1 shows the increasing latency of a packet depending on
the position of the matching ACL rule1. We see that a packet where the 100th
rule matches has a median latency of 14.5 µs while a packet where the 1000th rule
matches has a higher median latency of 20.7 µs. Figure 2.1 also shows that the
latency increases linearly based on the number of rules. In our example, we identify
a linear increase of the latency by around 3.2 µs per 500 rules (this value varies on
different firewalls and hardware).

With an increasing number of ACL rules, the firewall needs more time to process
the ACL rules (the ACL processing takes longer). Thus, less time remains for
remaining packet processing before the next packet arrives. To give an idea of how
much time a firewall has to process a packet (e.g., ACL matching and forwarding
the packet), we show the frame interarrival time for different packet sizes2 and data

1The whiskers on the box plot denote the minumum and maximum latency observed during the
measurement. The boxes are drawn from the first to the third quartile and the horizontal line
in between denotes the median of the latency.

2Note that we use the term “packet” as a synonym for the OSI layer 2 “frame” throughout the
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Figure 2.2: Amount of time between the arrival of frames for different packet sizes
and data rates

rates in Figure 2.2. The interarrival time is the amount of time that passes until
the next packet arrives, assuming a constant packet size and data rate. We can
calculate the interarrival time A in seconds with Equation (2.1) using the packet
size sp in bytes and the data rate rd in Gbit/s. In the equation, we add 20 to the
packet size because of the OSI layer 1 overhead of 20 bytes (preamble, start frame
delimiter, and interpacket gap). At the smallest possible packet size (64 bytes) and
a data rate of 1 Gbit/s, only 0.67µs remain to process a packet. In contrast, at the
maximum possible (regular) packet size of 1522 bytes and a data rate of 1Mbit/s,
the firewall has 12 336µs to process a packet.

A =
(sp + 20) · 8

rd
(2.1)

At an increasing rate of arriving packets, the firewall cannot keep up checking the
ACL anymore if too many rules need to be checked. The time required to match
the rules exceeds the time available to process the packet. In that case, one or
more packets arrive at the firewall while the firewall still processes another packet.
To avoid that the firewall must drop these packets, it stores arriving packets in a
queue, more specifically, in the ingress queue. Each port of the firewall has such an
ingress queue. When the firewall has processing resources available, it fetches the
next packet from the ingress queue to process it. However, an increasing number
of packets in the ingress queue leads to congestion, meaning the latency increases
up to milliseconds. The queue can only store a limited number of packets. As a
consequence, the firewall must drop packets if the queue is full, which leads to packet
loss.

thesis.
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Figure 2.3: Latency and packet loss for different matching positions (data rate:
500Mbit/s; packet size: 64 B)

The low data rate of 1Mbit/s in Figure 2.1 offers enough time (672µs) for the
firewall to process 2000 rules. Thus, the ingress queue is empty. This changes in
Figure 2.3, where the data rate is 500 Mbit/s. The ingress queue fills completely
up, starting at slightly over 200 rules to process per packet. This is visible in the
increasing packet loss that occurs due to the full queue. The high data rate of
500Mbit/s does not leave enough time to match all rules before the next packet
arrives.

2.4 Ideas to achieve low latency and low jitter
To meet the low latency and low jitter requirements, we propose three ideas that
we design (see Chapter 5), implement (see Chapter 6) and evaluate (see Chapter 7)
in this thesis. The first two ideas change the way how the firewall performs ACLs
checks and the third one changes the way how the firewall processes high-priority
packets.

2.4.1 Timebound

With the timebound idea, we aim to reduce the ACL processing time below the
packet interarrival time. If the ACL processing time stays below the packet interar-
rival time, the ingress queue does not fill, preventing high latency, jitter, and packet
loss. This is achieved by limiting the ACL runtime to a configurable duration (time
limit, e.g., 2 µs). When the time limit exceeds, the firewall stops ACL processing of
the packet and forwards the packet as if the ACL check yielded the allow action.

The time limit is configurable (e.g., by an administrator) on a per-flow basis so
that packets with higher priority can be assigned a shorter time limit. For example,
packets with a different source IP address or packets with a different priority code

8



2 Motivation

point field in their VLAN tag can be assigned different time limits. Note that we do
not recommend configuring time limits with the same granularity as the ACL rules.
The number of time limit rules would grow too fast, leading to the same performance
issues as the ACL check. Instead, the time limits are intended to configure a single
time limit rule for a set of different connections. For example, a time limit rule
applying to all packets with the same priority stored in the VLAN tag.

One problem remains if the time limit is only applied only to a few flows: packets
of other flows can still increase the ACL processing time above the packet interarrival
time. Using timebound, we can solve this problem by limiting the ACL processing
time of all packets. However, a static time limit for all packets does not scale with
the rate of arriving packets. In dynamic load scenarios, the packet rate can rise
to any rate. Thus, the interarrival time can further decrease while the time limit
is static, leading to packet loss at higher packet rates. As a solution, we let the
firewall automatically determine a suitable time limit for each packet. This allows
the firewall to match as many ACL rules as possible without causing the ingress
queue to fill up.

Stopping ACL checks before they are actually finished worsens the security be-
cause the firewall cannot match all rules. For example, the result of the ACL check
could have been to block the packet but the rule responsible for this decision was
never reached because the packet was already forwarded. Therefore, the decision
which packets are configured for time-limited ACL checks or the decision for the
value of the time limit should be made wisely.

To provide at least some level of security, the firewall continues the ACL check
in the background after it forwarded the packet without delaying other packets. As
a result, the packet is not further delayed, but we still get the result of the ACL
check. This allows to report or log wrong decisions (i.e., cases where a packet was
forwarded although it should have been dropped). Logging wrong decisions is a
tradeoff between latency and jitter reduction and security. Possible logging targets
are, for example, syslog or a monitoring service.

In summary, timebound consists of three components that can but do not have
to be used in combination:

• A configurable time limit to configure a custom time limit per flow (to limit
the processing time of high-priority packets).

• An adaptive time limit that applies to all packets.

• Analyze later to complete the remaining ACL checks in the background to get
notified about packets that should have been blocked by the ACL.

2.4.2 Passive

With the passive idea, we completely avoid the delay caused by ACL checks by
forwarding the packets without ACL check. Whe firewall performs the ACL checks
in the background using analyze later from the timebound idea. Whether the passive
idea should be applied to a packet is configurable on a per-flow basis equally to the
timebound idea.
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2 Motivation

2.4.3 Priority

Our goal with the priority idea is to prioritize the processing of high-priority packets
to forward them as fast as possible at the cost of non-priority packets. Processing
of non-priority packets, on the other hand, is less time-critical so the latency can be
higher.

To forward high-priority packets as fast as possible, the firewall must be able to
classify arriving packets as high-priority or non-priority. Whether the firewall should
classify a packet as high-priority is configurable on a per-flow basis. Moreover, the
firewall must be able to spend as much processing power as possible on high-priority
packets as soon as they arrive at the firewall, neglecting non-priority packets if
needed. This ensures that the firewall processes high-priority packets as fast as
possible.

In contrast to the other two ideas, timebound and passive, the priority idea is not
limited to ACL processing. Instead, the firewall classifies packets at the beginning of
processing, for example, when the firewall fetches the packets from the queue. This
ensures that we can prefer high-priority packets throughout the whole forwarding
and filtering process.

With the priority idea, we effectively reduce the packet rate which leads to a
higher interarrival time. We can ignore the effect of non-priority packets on the
packet rate and only take high-priority packets into account. Thus, the firewall
has more time to process a high-priority packet until the next high-priority packet
arrives (assuming the rate of high-priority packets is lower).

10



3 Background
Firewalls and packet processing play a fundamental role in this thesis. Therefore,
we first give an overview of firewalls. After that, we explain how packet processing
in the Linux kernel and the user space works. There are some differences between
packet processing in the kernel and the user space that make a significant difference
in performance. In between, we present several firewalls that we compare with
each other in Section 5.1 because we considered using them to implement our ideas.
Lastly, we explain the architecture of DPDK and FD.io VPP. DPDK is a framework
on which the firewall we modify, FD.io VPP, relies.

3.1 Firewalls
A firewall plays an essential role in network security. It is usually placed at the
border of a network where it is connected to another network that is considered
untrusted. An example of an untrusted network is the Internet. Likewise, two
networks with different security levels may be divided using a firewall. The firewall
filters packets flowing between the two networks based on a policy (configured by
the administrator) to prevent malicious packets from entering the trusted network
and to prevent internal data from flowing into the untrusted network.

In the following, we show the different deployment locations and deployment types
of firewalls (software or hardware). Then, we explain and differentiate the different
firewall categories. The segmentation into different firewall types and categories is
not always unambiguous because the transitions in between are smooth. However,
some literature [3–6] helped us to find a common overview of firewalls that we present
in this section.

3.1.1 Personal firewall vs. Network firewall

There are two main locations where a firewall can be installed. First, a firewall
can be installed on a client, for example, an office computer. Common operating
systems, like Windows, already come with a preinstalled firewall to prevent attacks
on the client. Firewalls running on such clients are called personal firewalls or host
firewalls. Figure 3.1 shows an example topology where all internal peers (clients)
come with their own personal firewall.

Second, a firewall can be a dedicated device that is placed in the network. It
protects all hosts and servers connected to the network from attackers in the un-
trusted network. This firewall type is called network firewall. Figure 3.2 shows an
example topology where a network firewall protects all internal peers. Note that the
peers can still be equipped with their own personal firewall, which we omitted in
the example topology.
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Figure 3.1: Example topology with personal firewalls

Figure 3.2: Example topology with a network firewall
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Layer Data unit
7 Application

Data6 Presentation
5 Session
4 Transport Segment, datagram
3 Network Packet
2 Data link Frame
1 Physical Bit

Table 3.1: OSI model (layers based on ISO/IEC 7498-1:1994 [7], data units based
on RFC 1122 [8])

3.1.2 Software firewall vs. Hardware firewall

Network firewalls come in two different forms: a software firewall or a hardware
firewall. A software firewall runs on top of a common Operating System (OS) like
Linux, that is, it is installed after installing the generic OS. The OS runs on com-
modity hardware. This means that the software firewall performs packet processing
on the general-purpose CPU.

A hardware firewall comes as a dedicated device on which the firewall system is
installed. The operating system is often based on Linux or FreeBSD. Usually, a
hardware firewall includes custom hardware, like ASIC, that speeds up the packet
processing because the ASIC is highly optimized for its purpose. For example, the
ASIC stores the routing table, allowing the hardware firewall to look up the next hop
fast and in constant time. A software firewall uses the CPU to search the routing
table that is stored in the memory instead. This usually takes longer compared to
a lookup using the ASIC.

3.1.3 Firewall categories

The different firewall categories that we present in the following can be implemented
by both, personal firewalls and network firewalls, as well as in both appearances,
software firewalls, and hardware firewalls. Multiple categories can also be (and often
are) combined into one single firewall product.

3.1.3.1 Stateless packet filter

A stateless packet filter is the most basic firewall category and usually operates
on the data link layer, network layer, and transport layer of the OSI model (see
Table 3.1 for an overview of the OSI model). It analyzes incoming packets (flowing
from the untrusted network into the trusted network) as well as outgoing packets
(flowing from the trusted network into the untrusted network) and subsequently
allows or blocks them based on a configurable policy.

The policy is implemented with one or more ACLs that need to be assigned to
each network interface if the packet filtering functionality should be enabled on that
interface. The ACLs can be assigned per direction, ingress (packets arriving on the
interface) and egress (packets leaving the interface). An ACL consists of one or
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Src IP Src port Dst IP Dst Port Protocol TCP flags Action
192.0.2.0/24 - - 443 TCP - Allow
192.0.2.0/24 - - 8080-8085 UDP - Allow
192.0.2.0/24 - 198.51.100.20 25 TCP - Allow

(a) Stateless egress (outgoing) ACL

Src IP Src port Dst IP Dst Port Protocol TCP flags Action
- 443 192.0.2.0/24 443 TCP ACK Allow

(b) Stateless ingress (incoming) ACL

Table 3.2: An example of stateless ACLs. “Src” and “Dst” are abbreviations for
source and destination.

more rules. Each rule consists of several fields whose values can be compared with
the values of the corresponding fields in a packet. Table 3.2 shows a typical example
of the structure of an ACL. Each table column stands for one field in the ACL. In
this case, the fields consist of a 5-tuple (source IP address, source port, destination
IP address, destination port, protocol), and additionally, a TCP flags field. There
is also an Action field that defines how the packet is handled by the packet filter if
a rule matches the packet. Possible actions are Allow to let the packet pass through
the packet filter and Block to drop the packet. Additionally, other typical fields are,
for example, source and destination MAC address as well as fields to filter Internet
Control Message Protocol (ICMP) packets based on the ICMP type and ICMP code.

When a packet arrives on an interface to which an ACL was assigned, the firewall
compares the packet with each ACL rule until one rule matches. The order in which
the rules are compared is equal to the order defined by the administrator during
configuration. The comparison (matching) of a packet with a rule works as follows:
each field of the rule is compared with the corresponding field in the packet. If
the values of all corresponding fields are equal or included in the range, the packet
matches the rule. As a consequence, the action defined by the rule is taken. A rule
field can also be empty (indicated by “-” in the table). Then, the field is ignored
and not compared with the packet. If no rule matches, a default action is taken
which is usually to block the packet.

Example: imagine a peer in the trusted network (internal peer) talks to an external
server, that is, the UDP packet in Table 3.3 arrives at the egress ACL in Table 3.2a.
First, the packet is matched against the rule in line one. The source IP address
matches because the address 192.0.2.5 is part of the network 192.0.2.0/24 but
the protocol (and the port) do not match. The fields indicated with “-” are ignored
because they are undefined. Because there was no match, the packet is matched
against the rule in the second line. Again, the source IP address matches as well as
the protocol and the destination port because 8081 is in the range 8080-8085. As
a result, the action Allow is taken, which means the packet is forwarded.

One problem arises if a peer in the trusted network tries to establish a connection
to an external peer (e.g., a server) that involves bidirectional communication and
therefore requires packets flowing in both directions. One may configure the stateless
packet filter to allow packets flowing to external peers but disallow packets flowing
from external peers to internal peers (i.e., configure an egress ACL rule with allow
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Source IP 192.0.2.5
Destination IP 198.51.100.20
Protocol UDP
Source port 58952
Destination port 8081

Table 3.3: Example IP packet that arrives at the egress ACL in Table 3.2a

action and block ingress packets). As a consequence, packets can only flow from the
trusted to the untrusted network, and therefore, a bidirectional packet flow between
an internal peer and an external peer is not possible. There is a solution for this
problem as long as TCP is used as protocol between the internal peer and external
peer: an ingress ACL rule can be created to allow TCP segments having the ACK
flag set. An example rule is shown in Table 3.2b. This works because every TCP
segment has the ACK flag set except for the initial packet opening the connection.
As a result, external peers can send packets that are part of an established TCP
connection but cannot establish a connection to a peer inside the trusted network
themselves. Only internal peers are allowed to send the initial TCP segment for
connection establishment that has the SYN flag set. A disadvantage is that the
packet filter also allows packets that have the ACK flag set but are not part of an
open connection because the packet filter does not know whether the packet belongs
to an open connection. In general, applications running on peers should ignore such
packets not belonging to an open connection but there can be vulnerabilities that
can be exploited by attackers. As already mentioned, the presented solution only
works with TCP as a transport protocol. Because of the statelessness of UDP, there
is unfortunately no such solution for UDP packets on stateless packet filters.

3.1.3.2 Stateful packet filter

The stateful packet filter is similar to the stateless packet filter but extends the
latter by connection tracking. This means, it recognizes when a peer opens a TCP
connection and stores the information about the connection in a connection table.
The rough structure of a connection table is shown in Table 3.4.

When a packet arrives at the stateful packet filter, it checks whether the packet
belongs to an active connection by comparing the packet’s fields with the entries in
the connection table. If a matching entry was found, the packet is allowed and the
table is updated with the latest information about the connection, that is, the Last
active column of the corresponding entry is updated with the current timestamp
in our example. If the packet does not belong to an open connection, the packet
is processed by the ACL and allowed or blocked based on the result of the ACL
check. If the packet is the initial packet of a connection (i.e., opens the connection)
and is allowed by the ACL, the new connection is added to the connection table.
Inactive connections where no packets were transmitted for a period of time are
deleted from the connection table. Whether a connection is old and can be deleted
can be recognized by comparing the timestamp in the Last active column with
the current time. The termination of a TCP connection using the FIN flag can also
lead to the deletion of the corresponding table entry.

Whether connection tracking should take place for certain connections can usually
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Src IP Src port Dst IP Dst Port Protocol Last active
192.0.2.2 59853 233.252.0.128 443 TCP 524 587 468
192.0.2.5 58952 198.51.100.20 8081 UDP 550 000 001
192.0.2.26 61589 198.51.100.20 25 TCP 529 815 954

Table 3.4: Example of a connection table

be defined with an additional ACL action that can, for example, be called “reflect”.
This action is used instead of the allow action. UDP packets can also be considered
for connection tracking, though, UDP is stateless and a termination of the connection
cannot be detected. A timeout using the Last active column is the only way to
“terminate” a UDP connection in the view of the stateful packet filter.

Effectively all firewalls today combine a stateless and a stateful packet filter, even
if a stateful packet filter has the disadvantage of a higher performance and memory
impact due to the connection tracking and the connection table.

3.1.3.3 Circuit-level gateway

The circuit-level gateway operates on the session layer. It monitors handshaking
between two peers and decides whether the connection is legitimate. In addition,
it modifies the packets in a way that they appear to the external peer as they
originated from the circuit-level gateway. This is done by, for example, replacing
the source IP address on packets originated from the internal peer with the circuit-
level gateway’s IP address. On packets sent from the external peer to the internal
peer, the destination address of the internal peer is restored. To keep track of the
established connections and to modify the packets correctly, a connection table,
similar to the one shown in Table 3.4, must be used. But additional columns are
required to remember the values that need to be replaced in the packet. Hiding
the internal peer from the external peer has the advantage that the external peer
does not receive any information about the internal peer as well as the internal
network. Since a circuit-level gateway only monitors the handshaking, it should
be used in combination with a packet filter to filter individual packets too. For
example, SOCKS [9] is a well-known protocol that can be implemented by circuit-
level gateways.

3.1.3.4 Application-level gateway

Similar to a circuit-level gateway, the application-level gateway, also called applica-
tion proxy, sits between two peers to monitor the exchanged packets and hide the
internal peer from the external peer. But unlike the circuit-level gateway, it operates
on the application layer to check whether an application is allowed by the policy.
For example, applications like File Transfer Protocol (FTP) or Hypertext Transfer
Protocol (HTTP) can be completely blocked or filtered based on the application
layer payload and regardless of the used port. Filtering based on the requested
Uniform Resource Locator (URL) in the case of HTTP is one example.

While the application-level gateway offers great flexibility, it requires much more
processing power than the circuit-level gateway. Another disadvantage is that not
all applications may be supported because there are so many of them.
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3.2 Kernel space networking
In a Linux-based distribution, the Linux kernel takes over packet processing. Only
the packets destined for the host are passed to the corresponding user space appli-
cation by the kernel. In the following, we explain how the Linux kernel processes
packets and why the performance is not optimal.

3.2.1 Packet arrival

When a packet arrives, the Network Interface Controller (NIC) copies it to a prede-
fined region in the memory. This has the advantage that the kernel does not have
to copy the packet from the NIC itself and therefore saves processing time. The
capability of other hardware to access the memory independently of the CPU is
called Direct Memory Access (DMA).

However, the kernel must recognize that a packet arrived and was copied to the
memory in order to start processing it. The usual way to do this is using interrupts.
This means, the NIC sends an interrupt to the CPU whenever a packet arrives.
Consequently, the CPU interrupts processing to notify the kernel about the arrival
of a new packet. With an increasing rate of arriving packets, the interruption of the
kernel on the arrival of each packet introduces a significant processing overhead. As
a result, more processing is spent with interrupt handling than with actual packet
processing. Because of this, the New API (NAPI) was introduced in the kernel
version 2.5 [10].

The NAPI switches to polling mode (instead of interrupt mode) if the rate of
arriving packets is high. Depending on the packet rate, only a few or no interrupts
are triggered by the NIC. Polling means that the kernel checks the ingress queue
of the NIC by itself for the arrival of new packets. Polling increases the CPU
utilization because the CPU permanently polls the ingress queue if the CPU has no
other processing tasks. Without polling, the CPU goes to sleep as long as no packets
are left to process. The NAPI tries to find a balance between interrupts and polling
by combining them. At a low packet rate, the overhead of interrupt handling is no
problem because enough resources are available. In contrast, polling would lead to
an unnecessary high CPU utilization in that case. At a high packet rate, polling
reduces the overhead caused by interrupt handling while it does not unnecessarily
increase the CPU utilization.

3.2.2 Packet processing

The packet processing in the kernel is divided into three layers [10]. These three
layers correspond to the OSI model: layer 2, layer 3, and layer 4. Figure 3.3 shows
how an IP packet traverses the layers.

Layer 2, the data link layer, is implemented by the network driver. It interacts
with the NIC to receive and send packets. When a packet arrives, the network driver
allocates an instance of the sk_buff structure. The sk_buff structure represents
a packet in the kernel. It stores a reference to the packet data and additional
information about the packet. For example, a reference to the device on which the
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Figure 3.3: Example how a received/sent IP packet traverses the Linux network
stack

packet was received, and the EtherType of the packet (e.g., IPv4 or IPv6). Some
fields of the sk_buff are filled by the subsequent layers. When layer 2 finished
processing the received packet, it passes the packet to layer 3.

The third layer validates the IP header and decides whether and to which des-
tination the packet must be forwarded. If the packet must be forwarded, layer 3
modifies the packet as needed (e.g., decrement the TTL) and passes it back to layer
2 in order to transmit it. If the packet is for the local host (i.e., it must not be
forwarded), layer 3 passes the packet to layer 4.

Layer 4 is the transport layer. It analyzes the TCP or UDP header to match the
socket that is responsible for the packet. Each user space process that is listening
for packets opens a socket so that the kernel can keep track of the connection. Based
on the matching socket, the kernel passes the packet to the corresponding process
in the user space.

Note that packets that are only forwarded by the kernel do not leave the kernel
space. Sending packets from local processes works in the opposite direction where
layer 4 receives the packet from the user space process. Layer 4 then passes the
packet to layer 3 which in turn passes the packet to layer 2.

3.2.3 Bottlenecks

The kernel developers try to keep the networking stack in the Linux kernel as generic
as possible so that it fits all needs. For example, the sk_buff structure contains
metadata that is only needed by a few protocols [10]. As a result, there is a perfor-
mance overhead that makes the network stack slower.

García-Dorado et al. [11] say that the allocation and deallocation of the sk_buff
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structure takes a large amount of time. According to them, the sk_buff-related
operations consume 63% of the CPU usage during the reception of a packet that is
64 bytes large. Moreover, the kernel copies the whole packet before modifying it,
for example, to decrement the TTL [10].

If the kernel passes a packet to the user space for processing, additional overhead
occurs. To pass data to the user space, the kernel must copy the packet. As a
result, the kernel copies a packet at least twice. First, the network driver copies the
packet after its arrival from the DMA-able memory region to a packet buffer in the
kernel. Then, the kernel copies it from the packet buffer to a buffer of the user space
application [11]. To run the user space application, context switches are required
that produce additional overhead [11].

3.2.4 Netfilter

Netfilter is one of the firewalls that we compare in Section 5.1. Thanks to Netfilter,
the Linux network stack also provides firewall functionalities. Netfilter is a frame-
work in the Linux kernel that provides hooks to which other parts of the kernel can
subscribe. These hooks trigger when a packet arrives at certain points in packet
processing. Two popular projects build upon Netfilter: iptables and its successor
nftables.

3.2.4.1 Hooks

Netfilter provides multiple hooks that trigger at different points in packet process-
ing [10]. For example, there is a hook that triggers before the kernel makes a
routing decision (prerouting hook). Another hook triggers only for packets that are
forwarded (forward hook). Figure 3.4 shows the available hooks for IP packets.

Other parts of the kernel can subscribe to these hooks by defining a callback
function. If a hook triggers, the kernel executes all callback functions that have
subscribed to the hook. Consequently, the callback functions can react to the event.
For example, a callback function can manipulate (mangle) the packet or tell Netfilter
to drop the packet.

3.2.4.2 iptables and nftables

iptables [12] is a popular project to configure packet filtering rules. It is a state-
ful packet filter (see Section 3.1.3.2) and therefore allows to configure ACL rules.
However, iptables has more features than a stateful packet filter. For example, it
supports configuring Network Address Translation (NAT) rules and it can mangle
packets.

For its operation, iptables subscribes to the hooks from Netfilter. As a result,
filtering (as well as NAT and mangle) happens at multiple points, the hook points,
in packet processing as shown in Figure 3.4. The filtering rules can be configured
individually for each hook. iptables calls the different sets of filtering rules chains.
There are five chains: PREROUTING, INPUT, FORWARD, OUTPUT, and POSTROUTING.

iptables consists of a user space application for configuration and a kernel part to
subscribe to the hooks and process the configured rules. Besides the iptables user
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space application, there are more applications, for example, ip6tables to configure
IPv6 rules.

The successor of iptables is nftables [13]. It also relies on Netfilter and its hooks.
As well as iptables, nftables is split into two parts: A user space application called
nft and a counterpart in the kernel. One advantage of nftables is the unification
of IPv4, IPv6, and other protocols in one user space application (as opposed to
iptables where multiple applications exist). To achieve this, nft compiles the rules
into bytecode and passes rhe bytecode to nftables in the kernel. When a Netfilter
hook triggers, a virtual machine from nftables in the kernel executes the bytecode
that contains the rules configured for the triggered hook.

3.2.5 eBPF

The Linux kernel offers a flexible technology called eBPF (extended Berkeley Packet
Filter) [14] that allows running custom programs in the kernel. An example of
an application that makes use of such eBPF programs is bpf-iptables, which we
introduce in the next section. The kernel loads eBPF programs without the need of
changing the kernel source code or the need to load kernel modules. eBPF programs
run in a sandbox in the kernel and are written in a “pseudo-C code” [15]. They can
be used to extend the kernel functionality during runtime and without changing the
kernel source code. In addition, ePFB provides the functionality to exchange data
between the eBPF program and a user space application.

eBPF programs do not run the whole time after they were added to the kernel.
Instead, they are triggered by hooks. In contrast to Netfilter, these hooks are not
limited to the network stack. eBPF hooks can be found all over the kernel, for
example, it is possible to hook system calls.

There are three eBPF hooks in the network stack [16, 17]. Two of these hooks
are part of traffic control (tc). The first tc hook triggers just after an arriving
packet leaves the network driver (i.e., the sk_buff was already allocated). The
second tc hook triggers just before a departing packet enters the network driver.
The third hook is an eXpress Data Path (XDP) hook. It triggers right after the
packet was copied into the DMA memory region. At this point, the kernel did not
allocate an sk_buff and did not perform any expensive processing. This makes the
XDP hook suitable for high-performance applications, such as Distributed Denial
of Service (DDoS) mitigation, because packets can be dropped before they cause
a high amount of processing. For example, Bertin [18] integrated XDP into their
DDoS mitigation infrastructure.

However, to ensure that an eBPF program is safe to run, the kernel validates the
eBPF program when loading it. As a result, there are some limitations of the eBPF
programs [16]. First, the eBPF program must not contain loops (except loops with
a static number of iterations). Second, the length of the eBPF program is limited.
These limitations constrain the applications where eBPF can be used. Sometimes,
workarounds are possible. For example, multiple eBPF programs can be chained
together if one program gets too large.
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3.2.6 bpf-iptables

Based on eBPF, Miano et al. [17] developed bpf-iptables. We considered using
bpf-iptables as firewall for this thesis. Therefore, we explain the advantages and
disadvantages of bpf-iptables in Section 5.1.

bpf-iptables emulates the iptables syntax and functionality using eBPF. However,
it only supports a subset of the iptables features. For example, bpf-iptables does
not support NAT and mangling packets.

To emulate iptables filtering, bpf-iptables provides a user space application that
accepts commands in the iptables syntax to configure the filtering rules. The user
space application transforms the configured filtering rules into multiple eBPF pro-
grams. After that, the user space application loads the eBPF programs into the
kernel.

iptables allows configuring rules in different chains (see Section 3.2.4.2). These
chains correspond to different Netfilter hooks. However, eBPF does not provide
these hooks (see Section 3.2.5). To reproduce the iptables chains, bpf-iptables must
emulate the Netfilter hooks. bpf-iptables does that by using the tc and XDP hooks
of eBPF. Additionally, the XDP hook brings the advantage that it is more efficient
than Netfilter hooks. When the XDP hook triggers, the kernel has not yet allocated
an sk_buff for the packet. If a packet matches a filtering rule in the FORWARD chain
with the action allow, bpf-iptables directly passes the packet to the target NIC. In
that case, the packet skips the rest of the Linux network stack. Therefore, the kernel
does not allocate an sk_buff.

bpf-iptables not only emulates iptables using eBPF. It also improves the matching
algorithm. iptables traverses the filtering rules linearly for matching. To reduce the
duration for rule matching, bpf-iptables uses a Linear Bit-Vector Search. According
to Miano et al. [17], the improved matching algorithm enables a 64x speedup on
common CPUs.

3.3 User space networking
In the last section, we explained how networking in the kernel works and pointed
out multiple bottlenecks. To overcome those bottlenecks, user space I/O frameworks
emerged. Their goal is to increase the throughput and reduce the latency. For this,
the user space I/O frameworks completely bypass the kernel network stack and
perform all packet processing in user space applications.

We use two user space I/O frameworks in this thesis: DPDK and FD.io VPP.
FD.io VPP is the firewall we modify in this thesis. DPDK is the framework that
FD.io VPP uses to fetch packets from the NIC. To give an overview of user space I/O
frameworks, we first explain the general techniques of user space I/O frameworks in
this section. After that, we introduce DPDK and FD.io VPP.

3.3.1 Techniques to improve the performance

User space I/O frameworks use several techniques to increase the throughput and
to reduce the latency compared to the kernel network stack. In the following, we
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explain the most important techniques that were identified and evaluated on their
performance by Barbette et al. [19]. The frameworks we use in this thesis (DPDK
and FD.io VPP) implement all of these techniques.

Kernel bypass User space I/O frameworks can bypass the kernel network stack
completely. They can use their own, optimized networking implementation to
achieve better performance. This way, they also prevent expensive system calls
that are required to transfer packets from the kernel space to the user space.

Zero-copy As we already explained in Section 3.2.3, the Linux kernel copies pack-
ets multiple times. Such copy operations take a large amount of time. Therefore,
many user space I/O frameworks do not copy packets from the DMA memory re-
gion. Instead, the frameworks use references to the packet data in the DMA memory
region during the whole packet processing.

Polling The usual way to get notified about new packets is to wait for interrupts
from the NIC. The Linux kernel extended this mechanism with the NAPI by using
polling at high packet rates to reduce the overhead caused by the interrupts (see
Section 3.2.1). To further improve the performance, some user space I/O frameworks
completely avoid interrupts. Instead, they poll the ingress queue all the time to fetch
packets as soon as they arrive. This comes with the disadvantage of a constant CPU
utilization of 100% because the CPU is always busy polling the ingress queue.

Batched I/O Many user space I/O frameworks process packets in batches to re-
duce the processing overhead. For example, they reduce the overhead for accessing
the NIC this way. Moreover, batching allows using the vector instructions of mod-
ern CPUs. We discuss this topic more detailed at the example of FD.io VPP in
Section 3.3.3.5.

Multiple ingress queues Modern NICs support multiple ingress/egress queues.
Thus, user space I/O frameworks can instruct the NIC to distribute arriving packets
on multiple ingress queues. A common technique to distribute packets on multiple
ingress queues is called Receive Side Scaling (RSS). With RSS, the NIC hashes the
5-tuple of the packet. Based on the resulting hash, the NIC selects a queue in which
it places the packet. As a result, the user space I/O framework can distribute the
packet processing on multiple CPU cores (one CPU core per ingress queue).

3.3.2 DPDK

In this thesis, we modify FD.io VPP to implement the ideas we described in Sec-
tion 2.4. FD.io VPP, in turn, relies on DPDK to communicate with the NIC. Hence,
we give a brief overview of DPDK in this section and introduce the generic flow API
that is important for the priority idea.
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3.3.2.1 Overview

DPDK stands for Data Plane Development Kit. Intel created DPDK in 2010. Since
2017, it is part of the Linux Foundation. However, Intel is still the main contributor.
DPDK is available as open source under the BSD-3 license1.

DPDK runs in user space. It applies the techniques that we explained in the last
section to increase the throughput and reduce the latency compared to the Linux
kernel. It bypasses the kernel and communicates directly with the NIC. Since DPDK
polls the ingress queue all the time, it causes a CPU utilization of 100 %.

Essentially, DPDK provides efficient NIC drivers and abstracts different NIC mod-
els (see [20] for supported NICs). Applications using DPDK can configure various
NIC models using the same interface. Moreover, an application using DPDK can
receive packets and send packets regardless of the NIC model. DPDK also abstracts
the metadata that a NIC creates when a packet arrives. The metadata contains, for
example, information whether the NIC validated the IPv4 checksum. As a result,
an application using DPDK can analyze the metadata independently of the NIC
model. The same happens when an application transmits a packet using DPDK.
The application sets metadata for a packet, for example, to instruct the NIC to set
the VLAN tag. DPDK translates this metadata into metadata for the specific NIC
model.

3.3.2.2 Generic flow API

Many NICs that DPDK supports can match packets in hardware based on con-
figurable rules. DPDK offers libraries to configure such rules on the NICs. One of
these libraries is the generic flow API [21]. We use the generic flow API for hardware
classification on the NIC as part of the priority idea, as we explain in Section 6.4.3.

The generic flow API allows configuring so called flow rules on the NIC. A flow
rule consists of attributes, a matching pattern, and actions. The NIC matches the
packets based on the attributes and the matching pattern. If a packet matches
the matching pattern, it executes the defined actions. Attributes can be used, for
example, to group flow rules to a table or to specify the direction in which a flow
rule is applied (ingress or egress).

Actions instruct the NIC on how to process the packet if it matches. There are
many actions available, for example:

• QUEUE: Place the packet in the given queue

• DROP: Drop the packet

• COUNT: Count the number of packets matching the flow rule

• RSS: Enable Receive Side Scaling for matching packets using the given hash
function and queues

1Some components, such as Linux kernel components, are licensed under the GPL-2.0 or LGPL-
2.1 license
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Each flow rule includes a matching pattern that the NIC uses to match the packets.
A matching pattern consists of one or more pattern items of which many different
types are available. Some pattern item types are, for example:

• INVERT: Match all packets that do not match the pattern

• ETH: Match the Ethernet header

• VLAN: Match the VLAN tag

• IPV4: Match the IPv4 header

• UDP: Match the UDP header

• RAW: Match a given byte string

Each pattern item type usually accepts fields that correspond to its type. For
example, the ETH type accepts, among others, a source MAC address and a des-
tination MAC address for matching. The pattern item types can be combined to
a matching pattern as required. For example, they can be combined in the order
[ETH, IPV4, UDP] to match a 5-tuple as with an ACL. If the predefined item types,
like ETH, are not sufficient, the RAW item type can be used. The RAW item type ac-
cepts a byte string that the NIC matches with the packet. In addition to this byte
string, the RAW type accepts the following values:

• A start position that defines at which byte in the packet the NIC starts match-
ing

• A search area around the start position if the exact position is unknown

• A bitmask to exclude certain bits from matching

• A second byte string (called “last”) to match ranges, for example, a port range
(the main byte string defines the start port and the last byte string defines
the end port)

3.3.2.3 Generic flow API limitations

However, the generic flow API comes with some limitations. These limitations arise
because not every NIC supports all features that the generic flow API offers. In
the following, we discuss these limitations at the example of the Intel I210 Ethernet
controller that the NIC model of our firewall uses.

The Intel I210 controller offers a smaller feature set compared to other controllers.
It utilizes DPDK’s IGB poll mode driver, so we can look at the source code of the
poll mode driver to see which generic flow API features the controller supports [22].
In addition, we looked at the data sheet of the Intel I210 controller [23].

The source code of the IGB poll mode driver boils down all supported features
of the generic flow API to five filters. These filters are configured with the same
attributes, pattern item types and actions from Section 3.3.2.2, but the I210 con-
troller is very picky regarding the combination of attributes, pattern item types, and
actions it accepts. As a result, all of these filters are very restricted in their feature
set. In the following, we give an overview of all five filters.
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2-tuple filter The 2-tuple filter matches the protocol field in the IP header and
the destination port (only one port, no port range). To create a 2-tuple filter flow
rule, the pattern item types must be combined as in the following example: [ETH,
IPV4, UDP]. All fields other than the protocol field and destination port field must
be left empty.

Ethertype filter The ethertype filter filters the EtherType field in the Ethernet
header, therefore the ETH pattern item type is used (with the EtherType field filled).

TCP SYN filter The TCP SYN filter matches packets that have the TCP SYN
flag set. To create a TCP SYN filter rule, the pattern item types must be combined
as in the following example: [ETH, IPV4, TCP]. All fields must be left empty
except the TCP flags field where the TCP SYN flag must be set.

Flex filter The flex filter uses the RAW pattern item type and is therefore equal
to its description in Section 3.3.2.2. However, there are a few limitations. The I210
controller does not allow real bitmasks. Instead, the bitmask is actually a bytemask
to define whether a byte of the pattern is matched or ignored. Additionally, it is
possible to concatenate multiple RAW pattern items ([RAW, RAW, ...]), but the I210
controller can only match the first 128 bytes of a packet. Lastly, the I210 controller
does not support ranges. This means that, for example, only one port number and
no port range can be matched.

RSS filter The RSS filter is no actual filter on the I210 controller. Instead, it is
only the RSS action that must be configured without any pattern items. As a result,
the NIC distributes all arriving packets among the given queues (i.e., no filtering is
possible).

In addition to the above limitations, there are a few limitations that apply to all
these filters. The I210 controller only allows to configure eight flow rules per filter
and port. For the TCP SYN and RSS filter, the I210 controller allows one flow rule
(this is no limitation in practice because more than one of these flow rules do not
make sense anyway). According to the data sheet, the I210 controller only supports
four flow rules for the ethertype filter [23] while DPDK allows configuring eight of
them. We did not try what happens if we configure more than four flow filter rules
for the ethertype filter. Another limitation is that all filters only support the QUEUE
action, except the RSS filter, which is configured using the RSS action. Lastly, all
flow roles can only be configured in ingress direction because the I210 controller does
not support egress flow rules.

In conclusion, we realize that the I210 controller limits the feature set of the generic
flow API significantly. We cannot even configure ACL rules anymore because the
I210 controller only supports 2-tuples. As workaround to enable the configuration
of ACL rules, we use the flex filter later in this thesis (see Section 6.4.3). With the
flex filter, we can recreate an ACL with a limited feature set (e.g., no IP and port
ranges).
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3.3.3 FD.io VPP

FD.io VPP is the firewall we chose to implement the ideas described in Section 2.4.
Therefore, this subsection is of special importance because the technical details
explained here are relevant throughout the thesis. All information about FD.io
VPP and our modifications discussed in this thesis are based on version 21.10. The
corresponding code is available in FD.io’s self-hosted Git repository [24] or as a
mirror on GitHub [25].

3.3.3.1 Overview

FD.io VPP [26], in the following called VPP, is an “extensible and modularized
software framework” [27]. It runs in user space, bypassing kernel networking, and is
written in C. VPP can be used for almost any networking application, for example,
as a router, switch, virtual network function, or in our case, as a firewall. Even
commercial products like Netgate TNSR [28] and Cisco IOS XRv 9000 [29] use VPP
internally. It is part of the Fast Data I/O project (FD.io, usually pronounced “Fido”)
that in turn is part of the Linux Foundation.

VPP is an open source project, licensed under the Apache 2.0 license. Cisco
started its development as a closed source project in 2002 to use it in Cisco prod-
ucts [30, 31]. In 2016, the FD.io collaborative open source project was launched
under the Linux Foundation with VPP being a part of it [27, 32]. Since then, VPP
is open source but Cisco is still the main contributor.

VPP is an abbreviation and stands for “Vector Packet Processing” or “Vector
Packet Processor”. Vector processing is the novelty of VPP [31]. Instead of pro-
cessing one single packet at a time, VPP processes packets in batches, so called
vectors, to increase the packet throughput. The goal of batching packets in vectors
is to use the available processing power more efficiently. It does so by leveraging the
instruction and data caches as well as vector instructions (e.g., Intel SSE). Using
the caches as much as possible ensures that the pipelines of a CPU are always full
and do not have to wait for data to arrive from the memory.

3.3.3.2 Features

VPP is meant to be a data plane, that is, its purpose should be primarily packet
forwarding [27]. A dedicated controller should take over the control plane tasks
like the configuration of forwarding rules. For remote configuration, VPP exposes a
binary API for which client libraries are available in different programming languages
like C or Python. In addition, VPP offers a so called “debug CLI” that is primarily
meant to be used for development or quick testing. The CLI lacks some features
that are only accessible via API (e.g., deleting ACL rules).

By default, VPP brings many features like NAT, Internet Protocol Security (IPsec),
or Dynamic Host Configuration Protocol (DHCP). If a feature is missing, one can
add it using the flexible plugin system. Many native features are plugins themselves,
as well as the firewall functionality that is part of the ACL plugin.

Plugins can make use of many available data structures and functions offered by
VPP. For example, VPP offers dynamic arrays (also called vectors) that are used all
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over in the VPP code. Some other data structures are built on top of these vectors,
such as bitmaps and ring buffers. They can also be used by plugins.

NIC drivers are implemented as plugins too. One of them is the DPDK plugin
that uses DPDK to fetch packets from the NIC using its poll mode drivers. But
there are also other drivers available since VPP existed before DPDK was released.
For example, there are also drivers for virtual interfaces that exchange data us-
ing shared memory (memif). In this thesis, we use the DPDK driver because it
works well together with our NICs and because it supports polling. VPP also sup-
ports interrupt-driven packet processing and an adaptive mode. The latter switches
between poll and interrupt mode automatically based on the number of arriving
packets.

3.3.3.3 Packet processing graph

Another fundamental idea of VPP, besides vector packet processing, is its graph
architecture. Each feature, like packet reception, IPv4 packet validation, or IPv4
forwarding is an individual graph node. The packets traverse different graph nodes
based on their content (e.g., IPv4 packets traverse the IPv4 nodes). VPP tries
to keep the packets batched as vectors all the time but splits them as required to
traverse the graph. Figure 3.5 shows an extract from VPP’s packet processing graph.
VPP differentiates between four node types: pre input nodes2, input nodes, internal
nodes, and process nodes.

Input nodes interact with the NIC drivers to fetch the packets from the NIC. In
other words, they are the starting node for most vectors (except if VPP generates
packets itself). The only input node in Figure 3.5 is the dpdk-input node that
abstracts DPDK.

Internal nodes are traversed after an input node or after another internal node.
Each performs small portions of packet processing like IPv4 packet validation (ip4
-input node in the graph). All nodes in Figure 3.5 except the dpdk-input node
are internal nodes. They can also be leave nodes (i.e., output nodes) that hand over
packets to the NIC to transmit them. But not every leave node transmits packets,
such as the error-drop node that drops packets.

Process nodes are independent of the packet processing graph. They do not take
part in packet processing. Instead, they perform organizational tasks like controlling
the CLI and API. Because of that, they are also not shown on the graph in Figure 3.5.

The edges between graph nodes and the nodes themselves are dynamic. During
compile time and also during runtime it is possible to register new graph nodes
using plugins. Plugins can insert nodes at any position to implement a new packet
processing feature. For example, the ACL plugin inserts several nodes, as we show
later in Section 3.3.3.8.

3.3.3.4 Graph traversal example

As an example, we traverse the packet processing graph in Figure 3.5. Initially, no
vectors are in the graph and therefore, VPP continuously runs the dpdk-input node

2Pre input nodes are rarely used and therefore not discussed here.
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Figure 3.5: Extract from VPP’s packet processing graph (note that the mpls-input
node subgraph is incomplete and that every node can have an edge to
the error-drop node)
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to poll the ingress queue. In practice, dpdk-input can poll multiple interfaces (one
after another). But to keep it simple, we assume we have one interface and one
queue in this example. Every time, dpdk-input runs, it tries to fetch packets from
the ingress queue. If packets are available, dpdk-input fetches up to 256 of them per
queue as this is the maximum allowed vector size. According to Barach et al. [31], a
vector size of 256 is optimal for a balance between throughput and latency. dpdk-
input then performs some preprocessing like converting DPDK-specific information
about each packet to VPP data structures. This allows other nodes to read that
information (e.g., whether the checksum of a packet is valid). The dpdk-input
node then decides to which node each packet must be forwarded. If the NIC does
not already determine the protocol carried in the frame, dpdk-input forwards the
packets to the ethernet-input node. All packets that are destined for the same
node are packed into the same vector. We assume for our example that all packets
are packed into one vector and forwarded to the ethernet-input node.

The ethernet-input node checks the EtherType field in the Ethernet header of
each frame to see which protocol it carries. It also checks whether the NIC already
validated the packet’s IPv4 checksum. If the NIC did not validate the checksum,
the next node is the ip4-input node, otherwise the ip4-input-no-checksum node.
Based on the result, ethernet-input places the packets in different vectors and
forwards them to the appropriate nodes. Thus, vectors must not traverse the whole
graph in one piece. They can be separated into multiple vectors and traverse the
graph independently. For example, the vector can contain IPv4 and IPv6 packets.
Hence, ethernet-input creates two vectors, one for the ip4-input-no-checksum
node and another one for the ip6-input node. When ethernet-input processed all
packets from the vector, VPP runs the next node to which a vector got forwarded.

In our example, VPP runs the ip4-input-no-checksum node to process the vector
forwarded to that node. When all packets were validated successfully, ip4-input
-no-checksum forwards the vector to the ip4-lookup node. Since we still have a
pending vector at the ip6-input node, VPP runs this node next. VPP continues
to run the nodes with pending vectors until all vectors traversed the graph. At this
point, all packets were either transmitted or dropped and VPP can run the input
nodes again.

3.3.3.5 Advantages of vector packet processing

The goal of vector packet processing is to make packet processing more efficient in
order to increase the packet throughput. Some of the main VPP developers, Barach
et al., discuss and evaluate the advantages in detail in their article [31]. In this
section, we want to give a brief overview of the advantages.

Less instruction cache misses The breakdown of features into nodes splits
packet processing into small tasks. These small tasks fit into the instruction cache
of the CPU if they are small enough. When VPP is running the node, the CPU
loads the instructions from the slow memory into the instruction cache while pro-
cessing the first packet. The next packets require exactly the same instructions.
Thus, the processing of the following packets is faster because the CPU can load
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the instructions from the cache instead of the memory. Effectively, VPP distributes
the overhead caused by loading the instructions on multiple packets and therefore
reduces the overhead in total.

Less data cache misses If VPP processes packets in batches, it knows which
packet comes next. This allows prefetching the data of the next packet while the
current packet is still processed. Data prefetching means that data is loaded from
the slow memory into the fast cache before it is needed.

For example, VPP can use prefetching when it verifies the IPv4 checksums of all
packets in a vector. While verifying the checksum of the first packet in the vector,
it can already load the checksum of the next packet in the vector from memory into
the cache. And while checking the checksum of the second packet, it can load the
checksum of the third packet and so on.

Prefetching ensures that the data for the next packet is available as fast as possible
so that the CPU does not have to wait. Because batch processing of packets is im-
plemented using loops in the code, the compiler can automatically insert prefetching
instructions. However, in some cases, prefetching calls are also manually inserted in
the VPP code.

Mitigate node switching overhead VPP’s graph architecture introduces addi-
tional processing overhead. When a node finished processing, VPP must determine
the node to run next. In addition, VPP must call the node’s entry point function
to run it which introduces an additional function call. VPP uses inline functions in
place of normal functions as often as possible to prevent processing overhead caused
by function calls. But this is not possible here because we cannot determine at com-
pile time which node is run after another node. Vector packet processing requires
only one call of a node’s entry point function for multiple packets. As a result, the
overhead caused by a node switch is distributed on multiple packets, which reduces
the total overhead.

Other optimizations Processing similar data in batches allows some general op-
timizations on today’s CPUs. The first optimization is manual loop unrolling. For
example, when iterating over 100 elements, VPP does not iterate over one element
at a time. Instead, VPP iterates over two or four elements at a time in some loops.
Figure 3.6 shows an example without and with loop unrolling. To use loop un-
rolling, the code must be organized manually as shown in the example. It is not
done automatically by the compiler. Loop unrolling ensures that the CPU pipelines
are always full. Otherwise, it can happen that the pipelines have to wait because of
the branching caused by the loop.

The second optimization is the use of vector instructions. If an operation must
be applied on many or all packets, it is inefficient to perform the operation for each
packet one by one. Instead, VPP uses Single Instruction, Multiple Data (SIMD)
instructions supported by today’s CPUs. These instructions perform the operation
in parallel for multiple packets at once. The number of supported vector operations
is limited. But examples are assigning a constant value to multiple variables at once
or performing arithmetic operations for multiple variables at once. In Intel CPUs,

31



3 Background

1 int arr [100];
2
3 for (int i = 0; i < 100; i++) {
4 arr[i] = i;
5 }

(a) Without loop unrolling

1 int arr [100];
2
3 for (int i = 0; i < 100; i += 4) {
4 arr[i] = i;
5 arr[i + 1] = i + 1;
6 arr[i + 2] = i + 2;
7 arr[i + 3] = i + 3;
8 }

(b) With loop unrolling

Figure 3.6: Example loop with and without loop unrolling

such SIMD instructions are called SSE and AVX.

All the advantages above come into play if the vectors are large. If the load is
low (i.e., VPP does not have to process many packets), the vector size is small be-
cause the queues are empty. With increasing load, the vector size increases because
VPP is still busy with processing packets while new packets arrive. The savings
through batch processing prevent further fill up of the queue and the vector size
settles at a certain value.

Thanks to vector packet processing, VPP achieves a high packet throughput.
Barach et al. measured a maximum throughput of over 8 Mpps3 [31] using one core
of an Intel Xeon E52690 processor running at 2.60 GHz. Their scenario was to
forward IP packets using a longest prefix matching lookup with a routing table size
of 130 000 entries. The packet size was 64 bytes.

3.3.3.6 Node scheduling

VPP uses its own scheduling mechanism to decide which graph node should run
next. The flowchart in Figure 3.7 shows the functionality of VPP’s scheduling. We
use it in the following to explain each step that is involved in scheduling.

Essentially, the scheduling consists of one loop that runs over and over. During
the loop, VPP runs all nodes that have pending work in a certain order. Except for
tasks that are required for scheduling, the main loop has no additional tasks. The
real work (i.e. packet forwarding) is done in the nodes that are scheduled in the
main loop.

3Mpps = Million packets per second
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Input nodes First, the loop runs all input nodes one after another to fetch packets
from the ingress queues of all NICs. As already explained in Section 3.3.3.3, the
input nodes decide to which internal nodes the packets must be forwarded. Every
input node creates the number of vectors that are needed to forward the packets.
This means, at least one vector for each node to which a packet must be forwarded
is created.

Until now, we just called the process of moving packets to the next node “for-
warding”. But it is no actual forwarding. Instead, the node places the vector in a
“pending vectors” array that stores all existing vectors destined for any node. To
remember to which node a vector belongs, vectors have an additional field to store
the identifier of a node. In other words, the pending vectors array stores all vectors
that VPP must process.

Inernal nodes When all input nodes finished, VPP iterates over the pending
vectors in the pending vectors array. For each vector, VPP identifies the node to
which the vector belongs, passes the vector to the node, and runs the node. The
node can then process the packets in the vector. Most nodes forward the packets to
other nodes because each node only takes over a small portion of packet processing.
To forward the packets to other nodes, a node creates the required number of vectors
and stores the packets in them. Then, the node stores the identifier of the next node
in each vector and appends the vectors to the pending vectors array. VPP continues
to iterate over the pending vectors until the array is empty and no more vectors are
added. Nodes stop appending vectors when they handed the packets over to the
NIC or when they dropped the packets. This means, all packets received from the
input nodes were forwarded or dropped when the pending vectors array is empty
and no packets remain unprocessed (except for packets that arrived at the ingress
queue in the meantime).

Process nodes At this point, all input nodes and internal nodes had the chance
to run (depending on whether vectors were forwarded to them). Only the process
nodes did not have the chance to run yet. Process nodes do not process packets like
input nodes and internal nodes. Instead, they perform organizational tasks during
the runtime of VPP. Because of this, they consist of an infinite loop that prevents
them from stopping in contrast to the input nodes and internal nodes.

The question is how process nodes can be paused after they were started if they
loop for an infinite time. The answer is cooperative multitasking. In a cooperative
multitasking environment, there is no external entity that stops tasks if they run
for a too long time. Instead, a task must ensure to pause (suspend) itself when it
is running too long. Exactly this is the case in VPP: process nodes must suspend
themselves after a while to allow other nodes to run4. There are two ways how a
process node can suspend. First, the process node can suspend for a certain period
of time (the duration is arbitrary but must be longer than 1 µs). Second, the process
node can suspend until it receives an event. Other nodes can signal an event to a

4Process nodes can really pause their execution anywhere within the loop and continue where
they paused. But we do not discuss in this thesis how that works.
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Figure 3.7: Flowchart showing the VPP node scheduling mechanism

process node and also pass data together with the event. Such an event wakes the
process node up again. But process nodes do not wake up immediately. Instead,
the identifier of the process nodes is stored in a “pending process nodes” array to
wake them up after running the internal nodes.

Now that we discussed how process nodes suspend and can be woken up again,
we return to the flowchart in Figure 3.7. After no pending vectors are left, there
is a check called “Thread is main thread?”. We can ignore this check for now and
assume that the answer is “Yes”.

The next step is to check whether process nodes that suspended some time ago
for a certain amount of time should wake up again. If a process node suspended for
long enough, it is added to the pending process nodes array.

After that, VPP iterates over the pending process nodes array to run all process
nodes that are scheduled to wake up again. Every process node runs until it suspends
itself again. When all scheduled process nodes finished running, the loop starts from
the beginning.

3.3.3.7 Multi-core support

In the last section, we explained how VPP schedules nodes. The scheduling and the
nodes all run on the same CPU core in a single thread, meaning no nodes can run
in parallel to process multiple packets at the same time. But VPP can also run on
multiple CPU cores. In this case, VPP spawns multiple threads, one main thread,
and multiple worker threads. The number of worker threads depends on the number
of CPU cores. Every thread runs on a different CPU core and is independent of the
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other threads. They all run their own instance of the scheduling loop.
The main thread is responsible for organizational tasks like CLI and API while the

worker threads perform packet processing. This brings the advantage that packet
processing is not interrupted by organizational tasks, which reduces latency and
jitter. Since organizational tasks run in process nodes, VPP does not run process
nodes on the worker threads. VPP checks before scheduling the process nodes
whether the scheduling loop runs on the main thread and only runs the process
nodes in this case. The decision “Thread is main thread?” in Figure 3.7 shows this
check.

VPP distributes the ingress queues of the NICs equally among the worker threads.
This means, every ingress queue is processed by a different worker thread. If fewer
worker threads than ingress queues are available, one thread processes multiple
ingress queues. In that case, VPP tries to place at least the ingress queues that
belong to the same NIC on different worker threads.

In addition, VPP assigns an egress queue of every NIC to each worker thread and
to the main thread. If a NIC does not have enough egress queues, the egress queues
are shared among multiple threads. This ensures that each worker thread can trans-
mit packets over each NIC. However, shared egress queues reduce the performance
because only one thread can access the egress queue at the same time. It is also
possible to override the automatic ingress queue and egress queue placement. An
administrator can manually specify the assignment of a queue to a thread using the
CLI or the API.

Since no ingress queues are assigned to the main thread, there are no input nodes
that the main thread must run. This means, the main thread must also not process
any pending vectors and therefore only runs process nodes all the time. But there
are some exceptions in which the main thread must still process pending nodes. For
example, some CLI commands like the ping command lead to the transmission of
packets. These packets are processed on the main thread because the CLI running
on the main thread is responsible for the ping command.

3.3.3.8 ACL Plugin

Most of the modifications we make to the VPP code are located in the ACL plugin.
Therefore, we want to give an overview of it in this section.

VPP offers multiple solutions that provide ACL functionality (ACL plugin, COP/
ADL plugin, Flow, Classifiers) [33]. But none of them except the ACL plugin
support stateful rules which was a requirement. The other solutions also do not
fit well together with our ideas (i.e., it would not be possible to implement them).
Therefore, we will not further examine them.

Overview The ACL plugin supports stateful and stateless filtering. Unless stated
otherwise, filtering functions like the stateless and stateful packet filters are described
in Section 3.1.3.1 and Section 3.1.3.2. The ACL plugin can filter on the 5-tuple and
TCP flags but also on the ICMP message and MAC address.

ACLs are assigned per interface and per direction. This means, we first create an
ACL that contains any number of rules. Then, we assign the ACL to an interface in
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ingress or egress direction (an ACL can also be assigned to multiple interfaces/di-
rections). Based on the direction, the ACL plugin filters packets when they arrive
at the interface or when the packets are sent over the interface.

The ACL plugin supports three actions: permit, permit+reflect, and deny. To
conform to our naming convention for ACL actions in the previous sections, we call
these actions allow, allow+reflect, and block. Allow+reflect is used for the stateful
feature of the ACL plugin. It tells the ACL plugin to track the connection of packets
that match the corresponding rule. This is in contrast to Section 3.1.3.2 where the
connections of all packets that have a matching rule with allow action were tracked.

ACL rules, their assignment to an interface and other options can be configured
using the CLI and the API. But the CLI does not support all features (e.g., it is not
possible to delete ACLs with the CLI).

Architecture The ACL plugin adds several internal nodes to the packet process-
ing graph. Figure 3.8 shows the most important of them (they are highlighted in
green). We omitted the nodes for layer 2 filtering because these are not relevant
in this thesis. In the graph, we can identify two groups of ACL nodes. The first
group consists of the acl-plugin-in-ip4-fa and acl-plugin-in-ip6-fa nodes.
They perform ACL checks for ACLs assigned in ingress direction. The second group
consists of the acl-plugin-out-ip4-fa and acl-plugin-out-ip6-fa nodes. They
perform the ACL checks for ACLs assigned in egress direction. If no ACL rules
were configured for a certain direction or protocol, the ACL plugin automatically
disables the corresponding node. This reduces the node switching overhead because
VPP must not run that node. In addition, the ACL plugin also adds a process node
to maintain the connection table. For example, it deletes connection table entries if
they time out.

All the packet processing graph nodes (except the layer 2 nodes) share the same
code, even though they are different nodes. When a vector arrives at such a node, it
traverses the node as the flowchart in Figure 3.9 shows. Essentially, the ACL plugin
iterates over each packet in the vector. Each iteration begins with a check of the
connection table to check whether the packet belongs to an active connection. If
that is the case, the ACL plugin updates the corresponding connection table entry
and allows the packet. The stateless ACL can be skipped.

If the packet does not belong to an active connection, the ACL plugin checks
the ACL for a matching rule. After that and if the action of the matching rule is
allow+reflect, the connection corresponding to the packet is added to the connection
table. If no rule matches, the action is block which causes the packet to be dropped.

At the end of an iteration (stateful and stateless), the ACL plugin determines the
node to which the packet must be forwarded next. If the action is block, the packet
is forwarded to the error-drop node in order to drop the packet.

Stateful filtering The connection tracking mechanism is similar to the description
in Section 3.1.3.2. Nevertheless, we want to mention one implementation detail
because it is relevant for the performance: the connection table is stored as a hash
table. This allows table lookups in a constant time because the ACL plugin must
not iterate over every table entry. Instead, the ACL plugin extracts and hashes the
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connection information from an arrived packet (the 5-tuple of the packet). It can
then use the hash to directly access the corresponding table entry.

Stateless filtering If a packet does not have an entry in the connection table, it
must be matched against the ACL rules. The flowchart in Figure 3.10 shows how
the matching of the 5-tuple and TCP flags works. ICMP message filtering also takes
place here but the protocol and the ports are replaced with ICMP-specific fields.
MAC address matching, on the other hand, takes place elsewhere.

First, the ACL plugin gets all ACLs that are assigned to the interface in the
corresponding direction. Then, it iterates over the ACLs and their rules. In each
iteration over a rule, the ACL plugin checks whether the rule matches the packet.
If the rule matches, the matching is finished and the action defined in the rule is
applied. Otherwise, matching continues until no more ACLs and rules are left. In
this case, the default block action is applied.

Next, we go into the details about how the ACL plugin matches a packet against
an ACL rule. Since the flowchart in Figure 3.10 abstracts the matching of a single
rule using the “Check ACL rule” process, we show the details of it in Figure 3.11.
In short, all 5-tuple and TCP flags fields are compared one after another. If a field
does not match, the rule does not match and the matching of the rule is stopped.
If all fields match, the rule matches the packet and the action defined in the rule is
used.

While we do not go through every field that is matched in detail because they are
shown in Figure 3.11, we want to mention a few noteworthy matching operations.
At the beginning of the matching, the ACL plugin compares whether the packet and
the rule both have the same IP version (IPv4, IPv6) because IPv4 and IPv6 rules
can be part of the same ACL. Since matching a rule with a different IP version does
not make sense, it is checked first to cancel the matching.

After matching the source IP, the ACL plugin checks whether the rule defines a
protocol to match (TCP, UDP, or ICMP). If that is not the case, the packet matches
because the rule specifies no details about the protocol. Otherwise, if the rule defines
a protocol, matching continues to match the protocol itself and the ports.

Rules that should not match a specific source and/or destination port must specify
the maximum allowed port range (0 to 65 535). As a result, all source and/or
destination ports match since they are within the allowed port range. The matching
of TCP flags relies on a bitmask where ones mark the flag bits to match and zeroes
mark flag bits to ignore during matching. If the rule does not define any required
TCP flags, the bitmask is zeroed. In this case, the TCP flags matching is not
omitted but always results in a match.

Hash-based vs. linear matching In the last section, we described a linear
matching approach. This means, all rules are matched consecutively and the more
rules are matched, the more time it takes. However, VPP also offers a hash-based
matching approach. It is similar to the hash-based connection table but more com-
plex because of the flexibility of the ACL rules (e.g., the ability to configure ranges of
IP addresses and ports). The ACL plugin allows switching between the hash-based
approach and the linear approach using a toggle during compile time and via API.
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In this thesis, we use the linear matching approach because it is widely used
in other firewalls (e.g., netfilter). This means, our solutions to the ideas are also
usable with other firewalls if we rely on the linear approach (some modifications are
required, though). In addition, it would not have been possible to implement the
timebound and passive ideas with hash-based matching. Therefore, we set the flag
at compile time to use linear matching.
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In this chapter, we present related work that is about low latency and low jitter
packet processing. Our firewall consists of two components that influence the latency
and jitter. First, the user space I/O frameworks we use for packet processing in
general (DPDK and VPP), and second, the firewall functionality itself.

4.1 Low latency packet forwarding in software
DPDK and VPP, both user space I/O frameworks, lay the foundation of our firewall.
The main goal of such user space I/O frameworks is to achieve high throughput.
They often process multiple packets in batches, which increases the latency and
jitter of packets. However, it is still possible to achieve low latency and jitter using
those user space I/O frameworks as we show in this thesis. A few researchers also
evaluated the latency of user space I/O frameworks like DPDK.

For example, Gallenmüller et al. [34] compared the throughput and latency of
multiple user space I/O frameworks, including DPDK. Moreover, they vary the batch
sizes to find a tradeoff between latency and throughput. Lastly, they introduce a
model to assess the performance of the frameworks based on several measurements.

Stylianopoulos et al. [35] go one step further and propose optimizations to the
configuration of a Linux-based distribution to reduce latency and jitter of packet
forwarding. They evaluate the improvements by measuring latency and jitter using
the Linux kernel network stack as well as DPDK. We considered their suggestions
in our testbed to get the lowest latency and jitter possible.

Emmerich et al. [36] did not evaluate user space I/O frameworks. They propose
an improved algorithm for the NAPI in the Linux kernel. Their algorithm reduces
the latency without increasing the CPU utilization too much. However, they did
not consider jitter. Moreover, they cannot overcome the other bottlenecks in the
kernel that limit throughput and latency (see Section 3.2.3).

4.2 Real-time packet processing on firewalls
A large part of the research on firewalls focuses on evaluating and improving the
throughput. Only a few researchers consider latency and jitter.

For example, Cereia et al. [37] measured the latency and jitter of an industrial
firewall in three scenarios. Decommissioned mode (only forwarding), ACL checks
enabled, and Deep Packet Inspection (DPI) enabled. The DPI measurement is
not relevant in our case because it filters Modbus TCP packets. The authors only
configured up to 31 rules but still measured a high latency with their utilized firewall
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in the range of hundreds of microseconds. They only measure the latency at a low
data rate (one TCP request every 100ms).

Cheminod et al. [38] assumed a scenario where the industrial firewall is placed
between an office network and an industrial control network. They measured how
much office traffic they could transmit over the industrial firewall before the time
constraints for the industrial traffic could not be met anymore. They used DPI
to check their industrial traffic. DPI increases the time to check the packets and,
therefore, reduces the performance. On the other hand, they checked the office
traffic only using ACL rules.

In another paper [39], the same authors extended the measurements carried out
in the paper above. They changed the testbed to a simple setup with a traffic
generator, a firewall, and a receiver. Using this testbed, they measured the latency
and the jitter with and without DPI.

Up to this point, the papers we mentioned in this section did not take the concept
of zones and conduits according to IEC 62443 into account. Zvabva et al. [40], on
the other hand, had the concept of zones and conduits in mind. They measured the
latency and jitter in a network with multiple firewalls in a row. However, they did
only measure up to 18 ACL rules.

Wüsteney et al. [1] also considered the concept of zones and conduits. Moreover,
they analyzed the problems caused by the high latencies and jitter of industrial
firewalls when using TSN. Based on their analysis, they present approaches to deal
with the latency and jitter caused by firewalls. They conclude that current software
firewalls are difficult to deploy in a TSN environment. Hence, we try to reduce the
latency and jitter of software firewalls in this thesis.

Pesé et al. [41] developed a proof-of-concept firewall for automotive purposes.
They had low latency and low jitter in their mind during development. However,
their firewall is not a pure software firewall because they rely on an FPGA as addi-
tional hardware.
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In this chapter, we first discuss why we chose VPP as firewall. After that, we discuss
how we design the ideas we presented in Section 2.4 to reduce latency and jitter as
much as possible. Moreover, we present the testbed we used to measure the latency
and to gather other information about packet processing. We use the testbed to
analyze the effect of our implementation of the ideas on latency and jitter.

5.1 Firewall selection
To implement the ideas we presented in Section 2.4, we first need to choose a suitable
firewall. We defined multiple requirements that the firewall must satisfy:

1. The firewall must be a software firewall without hardware dependencies (except
a NIC that is compatible with DPDK)

2. The firewall must provide a stateful packet filter

3. The firewall must provide good overall performance (high throughput and,
more importantly, low latency) because improving an inefficient firewall is not
useful if better ones are available

4. We must be able to implement the ideas into the firewall (source code must
be available, no technical restrictions)

We examined four software firewalls/filtering solutions that already satisfy the
first, second, and fourth requirement:

• iptables/nftables (see Section 3.2.4.2)

• eBPF (see Section 3.2.5)

• bpf-iptables (see Section 3.2.6)

• VPP (see Section 3.3.3)

In the following, we evaluate their suitability in terms of performance and ease of
implementation.
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5.1.1 iptables/nftables

iptables is a well-known firewall shipped with the Linux kernel (in the following, we
use the term iptables to address both, iptables and nftables). It is widespread and
well maintained.

However, being integrated into the kernel also means that we need to modify the
kernel. This makes our modifications harder to maintain and to deploy. We would
have to keep up with kernel development to be able to use the latest kernel version
including our modifications. To deploy our changes, we would have to compile and
replace the kernel every time. In addition, the performance of iptables is not optimal
because it brings along all the bottlenecks of the Linux network stack. For example,
bpf-iptables achieves higher throughput than iptables as we show in Section 5.1.3.

5.1.2 eBPF

Just like iptables, eBPF is part of the Linux kernel and, therefore, well maintained.
eBPF addresses the problem we mentioned in the last section about iptables: eBPF
does not require recompiling the kernel to apply changes. Instead, we can use eBPF
programs to implement the firewall functionality and load them into the kernel dur-
ing runtime. Thanks to the XDP hook, eBPF is able to provide better performance
than iptables.

The disadvantage of eBPF is that it does not provide any firewall features by
default. We would have to implement packet filtering ourselves which would take
a lot of time. As a solution, we discovered bpf-iptables that we discuss in the next
section.

5.1.3 bpf-iptables

bpf-iptables implements a firewall based on eBPF programs. Miano et al. [17]
achieved higher throughput with bpf-iptables compared to iptables and nftables.
They measured the throughput with 50 rules in the FORWARD chain and 64-bytes-
packets on a single CPU core1. With bpf-iptables, they measured a throughput of
about 0.9Mpps. In comparison, they only measured a throughput of about 0.5Mpps
with iptables and about 0.2Mpps with nftables.

Unfortunately, Miano et al. did not measure the latency and jitter. In general,
we assume that a higher throughput implies a lower latency and jitter. If a firewall
has a higher throughput, the packets take less time for processing, implying a lower
latency. Jitter is, besides the ACL check, often caused by overload situations which
occur more often on firewalls with lower throughput.

While bpf-iptables is a better choice than iptables performance-wise, it has the
disadvantage that it does not support all features of iptables. Moreover, the future
development of bpf-iptables is unclear. Since the publication of the corresponding
paper [17], bpf-iptables was not further developed (see the link to its source code
at [42]).

1Note that their packets match the rules uniformly over whole rule set. In our measurements,
only the last rule matches.
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5.1.4 FD.io VPP

In contrast to the firewall solutions above, VPP is a user space application. As
a result, it is easy to implement new features because no kernel modifications are
necessary. VPP is actively developed, mainly by Cisco. Therefore, it is a future-
proof choice. The performance of VPP is better than the performance of the other
firewalls above. For example, VPP achieves a median throughput of about 7Mpps
with 50 ACL rules on one CPU core (with hyper-threading enabled) and 64-bytes-
packets [43]. This is a much higher throughput than the one of bpf-iptables2.

Because VPP offers the highest throughput and presumably the lowest latency,
we chose to modify VPP in this thesis. In addition, its flexible architecture makes
the implementation of our ideas easier. The advantages of VPP outweigh the fact
that VPP is less widespread than iptables.

5.2 Timebound
We already explained the timebound idea in Section 2.4 and split it into three
components: configurable time limit, adaptive time limit, and analyze later. In
this section, we describe the design of these three components and the interaction
between them. Additionally, we discuss alternative design approaches. Details about
the implementation with VPP are covered in Chapter 6.

5.2.1 Configurable time limit

With the help of a configurable time limit, we can limit the duration of ACL pro-
cessing to a configurable time period. The configuration and functionality is similar
to ACLs, as we can set the time limit per flow. An administrator can configure rules
that are placed in a list. We call this list priority list. Table 5.1 shows the structure
of the priority list with example entries. The matching of packets works the same
as in the ACL. The priority list contains fields for the 5-tuple and TCP flags. While
a priority list rule does not have an action field like an ACL rule, it has a time limit
field to store the time limit that should be applied to the matching packets. The
priority list can be configured via API to be able to add and delete rules. Config-
uration using the CLI is not possible in our implementation, but CLI commands
for that can be added in future. Our implementation matches the 5-tuple and TCP
flags only. However, information from the layer 2 header and the VLAN tag can be
used for matching. This is for example useful when used in conjunction with TSN
because it uses the priority code point field in the VLAN tag. To demonstrate the
functionality of the timebound idea, our implementation is sufficient.

The priority list is processed similar to the ACL. This means, it is traversed in a
linear way until a matching rule is found. If a rule matches, the time limit stored
by the rule is used to limit the duration of the following ACL processing. If no
rule matches, the ACL processing time is not limited. However, to ensure that the

2We tried to match the CPU models of bpf-iptables and VPP measurements as close as possible.
Even if we dvide the throughput of the VPP measurements by two to compensate the use of
hyper-threading, VPP has still a higher throughput.

47



5 Design

Src IP Src port Dst IP Dst Port Protocol TCP flags Time limit
10.0.1.0/24 - 10.0.2.0/24 8080-8085 UDP - 0.6 µs
10.0.2.0/24 - 10.0.3.0/24 8098 UDP - 1.0 µs
10.0.3.0/24 - 10.0.4.0/24 8099 TCP - 1.5 µs
10.0.4.0/24 8099 10.0.3.0/24 TCP - 1.5 µs

- - - - - - 2.0 µs

Table 5.1: Example of a priority list with configured rules (the last rule is a catch-all
rule)

ACL processing duration is limited for all packets, a catch-all rule can be added
to the priority list. If the time limit exceeds during ACL processing, the packet is
forwarded. In addition, the packet information required to continue ACL processing
is forwarded to analyze later to complete the ACL check in the background.

5.2.2 Adaptive time limit

While the configurable time limit cannot prevent firewall overload in dynamic load
scenarios, the adaptive time limit adapts the time limit dynamically based on the
firewall load. This prenvents latency and jitter from increasing too much. The
adaptive time limit can be used in combination with configurable time limit if there
are packets with very strict time constraints that cannot be met from only using an
adaptive time limit. The adaptive time limit does not meet the time constraint of
a packet if its time constraint is lower than the highest adaptive time limit.

Adaptive time limit means that the time limit for ACL processing is chosen dy-
namically based on the load. This prevents the ingress queue from filling up with
too many packets which would increase latency. For example, if the firewall is under
low load, the time limit can be set to 2 µs and the queue will not fill with packets.
But if the load is high, for example, 500Mbit/s with a packet size of 64 bytes, 2µs
are too long because the packet interarrival time is lower (see Section 2.3 for an
explanation of the interarrival time). In that case, the time limit must be reduced
to a value so that the current packet has finished processing before (or just as) the
next packet arrives. This ensures that the next packet must not wait in the ingress
queue. Given the example data rate and packet size above and assuming the rate
and the packet size do not change, the next packet arrives 1.34 µs after the last
packet. As a result, the ACL processing time must be limited to a duration below
1.34 µs so that other forwarding tasks can also be completed within this time.

5.2.2.1 Measuring the firewall load

To make the time limit adaptive, the firewall must be able to adjust the time limit
based on the current firewall load. There are several ways to measure the current
firewall load. Some of them are easier to implement and more suitable while others
are impossible to implement, depending on the utilized firewall.

CPU The most trivial way is to measure the CPU utilization. The CPU utilization
directly relates to the firewall load, as the CPU needs to do more processing if the
packet rate is higher. At a CPU utilization of 100%, the firewall cannot keep up
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anymore and more packets arrive than it can process. However, in our case it is
impossible to retrieve useful data from measuring the CPU utilization. The reason
for this is the way how VPP (with the help of DPDK) fetches packets from the
queue. VPP polls the ingress queues continuously for new packets if has no packets
to process. As a result, we always read a CPU utilization of 100%.

Packet rate Another way is to measure the rate of packets flowing through the
firewall. The packet rate can be measured by counting the number of packets arriving
at the firewall within a given time period. It can also be measured by determining
the time interval between arriving packets. The disadvantage of this method is that
there is no static relationship between the packet rate and the firewall load. A
firewall with a better CPU could handle a certain packet rate better than a firewall
with a bad CPU and would therefore not overload. This means that the relationship
must be determined individually for each CPU model. Furthermore, the load on the
CPU depends on the packet. For example, one packet requires checking 10 ACL
rules and another packet requires checking 100 ACL rules. Thus, we cannot exactly
determine the firewall load even with a CPU-dependent mapping between packet
rate and firewall load.

Ingress queue A better way to determine the firewall load is to measure the
ingress queue occupancy. In other words, we count the number of packets in the
ingress queue. The queue occupancy is a good measure of the firewall load because
the number of packets in the ingress queue increases if the firewall is overloaded.
There is a limitation when using VPP, though. If multiple packets are waiting in the
queue, VPP fetches up to 256 of them at once from the queue (see Section 3.3.3.3).
This means, if we measure the queue occupancy after VPP fetched the packets, the
queue is empty or contains far less packets than expected. Instead, VPP already
stored the packets in a vector. Therefore, we must measure the queue occupancy
before VPP fetches the packets from the queue.

Vector size Alternatively, we can measure the vector size after VPP fetched the
packets from the ingress queue. The vector size is equal to the number of packets
that VPP fetched from the ingress queue. Figure 5.1 shows why the vector size is a
good indicator of the firewall load. If the data rate is low, there is much time avail-
able for ACL processing until the next packet arrives. As a result, the queue stays
empty and the vectors only contain one packet. But at higher data rates, where less
time is available until the next packet arrives, ACL processing can take longer than
time is available. In that case, packets are already waiting in the queue when packet
processing is finished. The vector size increases because all packets from the queue
are fetched at once and stored in a vector. VPP stores packets in vectors because
batch-processing multiple packets at once brings performance improvements (as ex-
plained in Section 3.3.3.5). Because of the performance gain, the vector size settles
at a new value and the queue contains roughly the same number of packets every
time when the packets in the vector have finished processing (with some outliers
because of fluctuations in processing duration). If the firewall is overloaded for a
longer time, the vector size settles at 256 packets (the maximum possible vector
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Figure 5.1: Mean vector size depending on the data rate and the position of the
matching ACL rule (packet size: 64 B)

size). A vector size of 256 signifies that there are most likely still packets in the
queue but VPP was not able to fetch all of them because of the maximum vector
size. If the vector size is at its maximum value for a longer time, the queue is full
and packet loss occurs.

In practice, measuring the vector size is similar to measuring the queue occupancy
but yet contrary. The similarity is that they both measure the number of packets.
But the difference is that the queue occupancy equals the number of packets in the
queue while the vector size equals the number of packets fetched from the queue.
Thus, we try to keep the queue occupancy equal to zero while we try to keep the
vector size equal to one.

Up to this point, we assumed that the firewall has only one port. In this case,
we must only measure the occupancy of one ingress queue. But this changes if the
firewall has multiple ports on which packets can arrive (or if one port has multiple
ingress queues). Then, we cannot measure the ingress queue occupancy of an ar-
bitrary port but we must measure it for all ingress queues of all ports. After we
measured the queue occupancy of all queues, we choose the largest queue occupancy
of them. We choose the queue with the largest occupancy because only this one re-
lates to the firewall load. The other queues have a smaller occupancy because they
have a lower rate of arriving packets. The largest occupancy value can then be used
to determine the firewall load.

If we measure the firewall load using the vector size and the firewall has mul-
tiple ports, we use a similar approach. In this case, VPP creates one vector per
ingress queue. VPP can merge the individual vectors later on their way through
the packet processing graph. But we cannot be sure that VPP merges them all into
one single vector because the packets can traverse different nodes. Therefore, we
measure the vector size of each vector directly after VPP fetched the packets from
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the corresponding ingress queue. We then choose the largest vector size and use it
to determine the firewall load.

5.2.2.2 Deriving the time limit from the vector size

In the last section, we explained multiple ways to measure the firewall load. For
our implementation, we chose the vector size because it is the most native way in
VPP to measure the firewall load. Now, we explain how we determine the time limit
based on the measured firewall load, that is, the vector size.

We use a PID controller for this because it is simple to implement and does not
require much processing. PID stands for the three components that PID consists
of: proportional, integral, and derivative. The input of the PID controller is an
error value. It is the difference between the setpoint and the actual value that
was, for example, measured. Each of the three components calculates an individual
correction value out of the error value where the proportional component considers
the current error value itself. The integral component considers the sum of the error
over time and the derivative error considers the change of the error over time. The
sum of all three correction values is the output of the controller.

In this thesis, we only implemented a P controller to show that it is possible to
prevent firewall overload by adapting the time limit to the current firewall load. In
future it is possible to improve the controller by tweaking the constants we show in
the following and by testing a combination of P, I, and D controllers.

First, we must define the input of the controller. We want to control the firewall
load, or more precisely, the vector size. But the controller expects an error value as
input, so we cannot use the measured vector size as input. To calculate the error,
we must define our setpoint (i.e., the vector size) first. Our goal is to keep the vector
size small, ideally one. Hence, the setpoint of the vector size is one, and every value
larger than one is an error. In Equation (5.2), we calculate the error e at a given
time t by subtracting the setpoint of the vector size V = 1 from the vector size sv
at that time.

Next, we define the output of the controller. When the vector size increases, we
want to reduce the time limit for ACL processing. Therefore, the output of the
controller must change the time limit. We calculate the output of the controller Pout

by multiplying the error e by the gain constant Kp as shown in Equation (5.3). We
explain below why we chose the value 200·10−9 for our gain constant.

The output of the controller is not the final time limit, it is only a correction value.
We calculate the final adaptive time limit la by subtracting the controller output
Pout from the constant 2 · 10−6 as shown in Equation (5.4). We need this additional
step because we want our upper bound of the time limit to be 2 µs (= 2 · 10−6 s).
This means, the packet should not spend more than 2 µs with ACL processing. If we
would not apply an upper bound, the ingress queue could fill up with an indefinite
number of packets leading to an increased latency. The controller could then only
counteract the increased latency at the next ACL check which is too late. Pout is
just the amount of time in seconds that is subtracted from the upper bound. To
prevent that the time limit gets negative or too low, we also set a lower bound, in
this case, 0.2 µs (= 200 · 10−9 s). This ensures that at least a few rules are checked
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before the firewall forwards the packet. But the lower bound also limits up to which
point firewall overload can be prevented.

In summary, each additional packet in the vector, reduces the time limit by 0.2 µs
until the time limit reaches the lower bound of 0.2µs. The reduction in steps of
0.2 µs comes from our gain Kp that we chose to calculate Pout. For example, if the
vector size is 1, the time limit is 2 µs. And if the vector size is 2, the time limit is
1.8 µs.

V = 1, Kp = 200 · 10−9 (5.1)

e(t) = sv(t)− V

e(t) = sv(t)− 1
(5.2)

Pout(t) = Kp · e(t)
Pout(t) = 200 · 10−9 · e(t)

(5.3)

la(t) = max
(
2 · 10−6 − Pout(t), 200 · 10−9

)
(5.4)

5.2.2.3 Combination of adaptive and configurable time limit

If we combine the adaptive time limit and the configurable time limit, we end up
with two different time limits. In this case, we chose the lower time limit for two
reasons. First, the configurable time limit must be the upper bound of ACL process-
ing duration. No packet should take longer, even if the firewall load is low. Second,
firewall overload should always be prevented, even if the configurable time limit is
higher.

Choosing the lower time limit is achieved using the min function as shown in
Equation (5.5) where la is the value of the adaptive time limit and lc the value of
the configurable time limit.

l(t) = min
(
la (t) , lc (t)

)
(5.5)

5.2.3 Analyze later

If ACL processing cannot be finished within the time limit, it is interrupted and the
packet is forwarded to the next hop. Analyze later continues ACL processing of the
packet in the background without interrupting packet processing. If the result of the
background check yields that the packet should have been dropped, the result should
be logged or reported. For example, we can log the result using syslog or report it
to a monitoring service. Analyze later must meet the following requirements:

• It must not interrupt packet processing which would increase latency and jitter

52



5 Design

• The ACL processing node must be able to notify analyze later about new
packets that need to be checked

• ACL checks should be continued where they were interrupted instead of start-
ing all over again (to save processing power)

5.2.3.1 Separation of packet processing and analyze later

To not interrupt packet processing, analyze later runs on a dedicated CPU core that
is not responsible for packet processing. In case of VPP, this is the main thread
that is also responsible for CLI, API, and other organizational tasks. The worker
thread(s) can thus fully focus on packet and time-limited ACL processing.

Analyze later runs as individual processing node on the main thread and has to
share its processing resources with other nodes whose functions were just mentioned.
Because of this, analyze later can only run for a limited time until it must interrupt
its work to give processing resources to other nodes (see Section 3.3.3.6 for an expla-
nation of the reason for this). To prevent that analyze later blocks other nodes for
too long because a large number of ACL rules have to be processed, analyze later
also uses the timebound idea to pause ACL processing after some time. Analyze
later then suspends and gives other nodes a chance to run. When analyze later can
run again, it continues ACL processing where it has stopped.

Alternatively, analyze later can run on the same CPU core as packet processing.
In that case, analyze later runs between packet processing, meaning, after the last
packet was forwarded and before the next packet arrives. Running between the
processing of packets (i.e., in an idle state) prevents that latency increases because of
analyze later. But running analyze later just as long until a packet arrives is not easy
to implement because we would have to detect the arrival of a packet in parallel (we
discuss this later in the design of the priority idea in Section 5.4.1.1). Furthermore,
running analyze later between packet processing is a contradiction because analyze
later is especially needed under high load scenarios. But under high load, analyze
later would not have enough time for background ACL processing due to the high
rate of arriving packets. Hence, we recommend running analyze later on a different
CPU core.

Instead of running analyze later on the same firewall, it can also be offloaded to
another device like a server. This has the advantage that more processing power is
available for background checks since we can choose a device that has a better CPU
or is just under less load because it must not take care of packet processing. Whether
packet processing benefits from offloading due to more available processing power
on the firewall depends on the available processing power compared to the firewall.
The disadvantage of offloading analyze later is that the delay increases until the
results are available. A delayed analyze later result can have an impact on security,
as wrong decisions are detected later. Fast analyze later devices can eventually
compensate the delay caused by the transmission to the external device by faster
ACL processing. But this largely depends on the number of rules to process and
the delay to exchange data between the two devices. Currently, there is no protocol
to exchange relevant data, but this is out of scope of this thesis. Additionally,
there is the question how required information (the information about the packets
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to check) is exchanged between the devices (e.g., the utilized protocol). Required
information encompasses the information about packets to check, the ACLs and to
which interfaces the ACLs are assigned.

As we can see, offloading analyze later to another device requires further design
considerations but is an approach worth considering. In this thesis, we implemented
the approach where analyze later runs on the main thread, separate from packet
processing.

5.2.3.2 Communication between ACL processing node and analyze later

Notifying analyze later about new packets that need to be checked is not trivial
because it must be efficient to not slow down packet processing. We chose a buffer
into which the ACL processing node inserts the information about the packets that
need to be checked. Analyze later then reads the packet information from the buffer
in the order it was inserted by the ACL processing node. Every time, analyze later
finishes the background processing of a packet, it deletes the corresponding entry
from the buffer and reads the information about the next packet from the buffer.

Due to hardware limitations that we discuss in Section 6.2.3.1, we define a max-
imum size for the buffer. If background processing is too slow, or in other words,
if the ACL processing node inserts more packets into the buffer than analyze later
can delete after it finished the background check of a packet, the buffer becomes
full. There are two possibilities how we can handle a packet that cannot be inserted
into the buffer: we drop the packet or we forward the packet without an additional
background check. Since forwarding without check is insecure because it could be
exploited by an attacker (Section 7.9.1.2), we recommend dropping the packet.

Another important point is the packet information that must be included in a
buffer entry so that analyze later can check the packet. We only keep the necessary
information and not the whole packet because copying the whole packet would re-
quire too much processing power (and memory) and therefore would increase the
latency. Analyze later needs the following information:

• The header fields of a packet that correspond to the ACL fields (i.e., the 5-tuple
and the TCP flags)

• The ACLs that need to be checked

• The rule and the corresponding ACL that has to be checked next (the previous
ones were already checked)

The header fields that correspond to the ACL fields are the actual information
that is extracted from the packet required for matching. The ACLs that need to
be checked are needed because analyze later does not know the ingoing or outgo-
ing interface of the packet and therefore cannot get the corresponding ACLs. To
be able to continue where the ACL processing was interrupted, the rule and the
corresponding ACL that has to be processed next must also be saved. Note that
we do not copy the whole information. To save memory, we store pointers to the
corresponding data.
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5.2.3.3 Summary

Figure 5.2 shows the interaction between all components of analyze later. First,
there is the worker thread including the ACL processing node. Every time, one
or more packets are fetched from the queue by the RX node, they traverse the
graph towards the TX node. They eventually arrive at the ACL node with enabled
timebound ACL checks. If the time limit for the ACL checks of a packet exceeds,
the packet information is inserted into the analyze later buffer. Packet processing
can then continue in the other nodes until they arrive at the TX node that sends
the packets to their destination.

Analyze later runs in parallel on the main thread and has to share its processing
resources with other nodes that are, for example, responsible for the CLI. Every
time the analyze later node is active, it runs its ACL processing loop. This means,
it fetches the next packet information from the analyze later buffer to continue ACL
checks where they were stopped by the ACL processing node. When analyze later
finishes the ACL checks, it deletes the packet information from the buffer and takes
action according to the matching result.

The processing time of the analyze later node is limited and therefore, it also
assigns a time limit to its own ACL checks. If the time limit exceeds, analyze later
suspends and gives processing resources back to other nodes. If analyze later is the
active node again, it continues where it stopped.

5.3 Passive
With the passive idea, which we first introduced in Section 2.4.2, the firewall for-
wards packets without previous ACL processing. Instead, the firewall performs the
whole ACL processing in the background using analyze later (see Section 5.2.3 for
analyze later design). Since an administrator should be able to configure which
packets the firewall forwards without ACL check, we use the priority list from the
configurable time limit (see Section 5.2.1 for configurable time limit design). For
this, the administrator configures a time limit of zero in the priority list. This causes
the firewall to skip ACL checks and to pass the packet information directly to ana-
lyze later. More features are not required, we just use the features we already need
for the timebound idea.

5.4 Priority
Our goal with the priority idea is to forward high-priority packets as fast as possible.
Non-priority packets normally delay a high-priority packet (see Section 2.4.3). We
came up with two approaches to overcome this. The first approach is a single-core
approach where high-priority and non-priority packets are processed on the same
CPU core. The second approach is a multi-core approach where high-priority packets
and non-priority packets are processed on different CPU cores. In the following, we
discuss both approaches, but due to the disadvantages of the single-core approach,
we recommend and we also implemented the multi-core approach.
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Figure 5.2: Architecture of analyze later
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5.4.1 Single-core approach

If the firewall processes high-priority and non-priority packets on the same core, it
must pause processing of non-priority packets when a high-priority packet arrives.
This way, the firewall ensures that it can process and forward the high-priority
packet as fast as possible. Therefore, the firewall must detect that a high-priority
packet arrived and is waiting in the ingress queue for processing. We call this action
queue lookup.

5.4.1.1 Detecting the arrival of high-priority packets

We have two possibilities to implement a queue lookup using a single CPU core:

• Pause packet processing and perform the queue lookup in regular intervals

• Delegate the queue lookup to the NIC and get notified by an interrupt

A trivial solution to pause packet processing for queue lookups is to wrap the
queue lookup in a function and insert function calls all around the code in regular
intervals. Listing 5.1 illustrates this solution by calling the queue_lookup function
that is responsible for queue lookup in that example. However, we find that this
is a dirty and unreliable solution since it is unclear in which time intervals these
checks are performed and also the same function call is added everywhere in the
code. In a large code base like the one from VPP with tens of thousands lines of
code, this is not only dirty, copying and pasting the same function call over and
over is unacceptable and tedious. Performing the queue lookups only during the
time intensive ACL processing would be an acceptable solution because only one
function call would be needed. The single function call would be placed in the loop
that is responsible for ACL checks as illustrated in Listing 5.2. A drawback of both
solutions is the overhead caused by the queue lookup because it slows down packet
processing.

1 // Packet processing code
2
3 queue_lookup ();
4
5 // Packet processing code
6
7 queue_lookup ();
8
9 // Packet processing code

Listing 5.1: Very basic approach to pause packet processing and perform a queue
lookup: insert function calls to queue lookup into the code in regular
intervals

A much cleaner solution than inserting function calls everywhere is using VPP’s
node/graph architecture (see Section 3.3.3.3). We can place the queue lookup logic
in a separate node that is called by VPP in regular time intervals. However, this
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solution introduces more overhead because VPP must suspend the currently ac-
tive packet processing node before the queue lookup node can run (switching the
active node requires additional processing). Another problem is VPP’s scheduling
architecture: VPP cannot call another node while a node is active because of the
cooperative multitasking design. As a result, we cannot completely control the inter-
vals in which VPP runs the queue lookup node. For example, VPP cannot call the
queue lookup node while the ACL processing node performs ACL checks. But ACL
checks can take a long time and thus, we would not detect arriving high-priority
packets. Changing this would require substantial changes to the scheduling code of
VPP (if there is even a way to implemnent this efficiently).

1 for (int i = 0; i < len(acl_rules); i++) {
2 struct acl_rule rule = acl_rules[i];
3
4 // Here , each rule is compared with the
5 // header fields of the packet
6 // (e.g., source IP or destination IP)
7
8 queue_lookup ();
9 }

Listing 5.2: Pause ACL checks and perform a queue lookup: only a single function
call to queue lookup must be inserted

In addition to the overhead introduced by the solutions to call the queue lookup
and the complexity to implement them, even the queue lookup itself is costly in
terms of performance. To perform the queue lookup, the firewall must fetch all
packets from the queue and then check them for high-priority packets. This means,
the firewall must also fetch and check non-priority packets which increases the overall
overhead and increases the delay for the high-priority packets.

A solution to overcome the overhead caused by the mixup of high-priority and
non-priority packets in the queue is to offload packet classification to the NIC. This
means, we configure two ingress queues (non-priority queue and high-priority queue)
on the NIC and the NIC decides, based on prior configuration, in which queue a
packet must be placed. This is an adequate solution that we discuss in detail in
the multi-core approach (Section 5.4.2). However, the firewall must still poll the
high-priority queue periodically for which it still must pause packet processing.

We can only avoid polling the high-priority queue by using interrupts. The NIC
can trigger an interrupt so that VPP is notified about a new packet in the high-
priority queue. But interrupts are where we started: we chose a user space firewall to
bypass the inefficient and interrupt-based kernel space networking. The interrupts
have to travel through the kernel to then notify VPP about the interrupt which
would increase the latency until the notification about a new packet arrives in VPP.
Since we did not investigate further on this solution, it is unclear what latency
would be introduced exactly. But there was an approach by Intel to reduce interrupt
latency in order to implement an interrupt-mode driver into DPDK in addition to the
poll-mode driver. But except for one presentation [44] there is no more information
about it and it seems like development did not continue.
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5.4.1.2 High-priority packet processing

Besides the detection of the arrival of a high-priority packet, there is another prob-
lem: how can the firewall interrupt processing of a non-priority packet in favor of a
high-priority packet? This is a similar problem as interrupting packet processing to
detect the arrival of a high-priority packet above.

With VPP, the best solution would be to insert the high-priority packet as a vector
into the pending vectors array and suspend the currently running node. Then, VPP
switches to the initial node responsible for processing the high-priority packet. But
as already written, VPP cannot interrupt the execution of a node in the middle
of processing and therefore the high-priority packet would have to wait until the
current node has finished processing. This can take a long time if, for example, the
ACL processing node is the active node. As written above, changing this would
require substantial modifications of the VPP scheduling code.

To sum it up, there are many disadvantages and complications with the single-
core approach. The queue lookup is inefficient or comlicated to implement and it
is complicated to implement fast switching from non-priority packet processing to
high-priority packet processing. Consequently, we discuss the multi-core approach
in the following.

5.4.2 Multi-core approach

We split the multi-core approach into two parts: the packet classification that is
performed on the NIC and the packet processing that is performed by the firewall
on multiple CPU cores.

5.4.2.1 Detecting the arrival of high-priority packets

We investigated two approaches to differentiate high-priority packets from non-
priority packets if multiple CPU cores are available.

In the first approach, we use one CPU core to poll the ingress queue and one
CPU core for packet processing. This allows one CPU core to permanently poll the
ingress queue to fetch arriving packets. The polling CPU core first classifies the
packets into high-priority and non-priority packets and then forwards them to the
packet processing CPU core. The other core can process the packets and, if required,
interrupt non-priority processing to process a high-priority packet.

This approach eliminates the need to interrupt packet processing in order to per-
form a queue lookup. In addition, more processing power is available for polling
and classifying packets so a higher rate of packets can be processed without causing
overload (as long as the classification does not get too complex).

The remaining problem is the interruption of non-priority packet processing when
a high-priority packet arrives. This is the same problem as in the single core approach
and cannot be solved easily. As a solution, we came up with another approach that
isolates non-priority and high-priority packet processing completely from each other
by processing the packets on different CPU cores. We describe this approach in
Section 5.4.2.2.
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However, up to this point, we assumed we only have a single ingress queue per port.
But we cannot implement the above approach with only one ingress queue because
it is not possible to efficiently poll the same queue in parallel on two different CPU
cores with DPDK. Therefore, high-priority and non-priority packets must arrive on
two different ingress queues. There is an elegant solution to this problem that also
avoids the overhead of classifying packets on the CPU: offloading packet classification
to the NIC. This is possible with DPDK as we described in Section 3.3.2.2. In
short, DPDK configures the NIC to classify packets and to place them, based on
the classification result, in a different queue. We can make the configuration of
the classification rules accessible to the administrator. In our case, we configure
the classification rules on the NIC based on the rules in the priority list that we
already described in Section 5.2.1. Even though we use the priority list here, we can
still use it for the configurable time limit. The advantage of using the priority list
for both solutions together is that we can use it to first separate the high-priority
packets from non-priority packets and then to additionally apply a time limit to the
high-priority packets.

To be able to configure in which queue the NIC should place the high-priority
packets, we extend the priority list by an additional field. This field must store
multiple port-queue pairs. For each port on which we expect high-priority packets
to arrive that match the priority list rule, we must configure such a port-queue pair.
A port-queue pair tells the NIC that is responsible for a port, in which queue it
should place matching packets. If a packet does not match any rule, the NIC places
it in the first queue (the NIC usually identifies the queues with numbers). Hence, a
port-queue pair should always specify the second queue or higher.

A disadvantage of classification on the NIC is the increased dependency from the
NIC model because care must be taken to coose a model that supports the required
classification features. However, many NICs support the required features as long
as they are supported by DPDK, especially if they are destined for data center or
embedded usage.

All in all, offloading packet classification to the NIC is a helpful solution because
it reduces the firewall load. The classification result is easy to process because the
NIC places the packets in different queues as configured by the administrator.

5.4.2.2 High-priority packet processing

The packet classification on the NIC is ideal to process non-priority and high-priority
packets on different CPU cores. VPP polls different queues that belong to the same
interface on different worker threads (as long as enough CPU cores are available and
multiple worker threads are configured). This is the key of the multi-core approach
because as a result, VPP processes high-priority and non-priority packets completely
independent of each other on different CPU cores. From the arrival at the NIC to
the end of packet processing, there are no more places where packet processing of
high-priority and non-priority packets can interfere with each other. For example,
the CPU core processing non-priority packets can be completely overloaded with-
out affecting high-priority packet processing. However, it is important to prevent
overload on the CPU core processing high-priority packets. But usually, the rate of
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high-priority packets is very low, in the range of kilobits per second. In case the
rate is too high, the high-priority packets can be distributed on multiple CPU cores
as long enough cores and queues are available (NICs only support a limited number
of queues, e.g., four ingress queues per port in our case).

The only remaining location where a high-priority packet has to wait for non-
priority packets in some cases is the transmission of packets. For example, the
firewall transmits a 1200 bytes large non-priority packet (this takes 9.6µs on a
1Gbit/s link). While transmitting the non-priority packet, the firewall receives a
high-priority packet. The firewall processes the high-priority packet and transmits
it via the same port. But that port is still in use to transmit the non-priority packet.
Consequently, the high-priority packet must wait for the end of transmission of the
non-priority packet. But this is not in scope of this thesis and a problem to be
solved with, for example, TSN.

We can also extend the priority idea further: we could split an ACL into multiple
per-core ACLs. For example, one CPU core only processes high-priority packets but
the ACL on that core contains rules matching both, high-priority and non-priority
packets. As a result, the ACL check on that core checks all rules even if some
rules can never match because the CPU core never processes corresponding packets.
Thus, we can split the ACL into a high-priority ACL and a non-priority ACL. This
improves the efficiency of ACL checks because less rules must be checked.

5.4.2.3 Summary

Figure 5.3 shows a summary of the final desgin of the priority idea with VPP.
We assume that the NIC has two queues and matches arriving packets to place
high-priority packets in queue 2 and the remaining packets in queue 1 (the default
queue). To configure the rules on the NIC, VPP uses the rules from the priority
list (not shown on the figure). Besides the main thread, VPP runs two worker
threads on different CPU cores. Worker thread 1 is responsible for the non-priority
packets while worker thread 2 is responsible for the high-priority packets. They
permanently poll the corresponding queue, fetch and process the arriving packets.
Since both worker threads run in parallel, they do not block each other and thus,
the high-priority packets do not have to wait.

If enough queues and CPU cores are available, this approach can be scaled by
increasing the queue and worker thread count as desired to process more packets.
The number of default queues can also be increased if RSS is used. RSS distributes
non-priority packets on configurable queues without the need to add priority list
rules (RSS can be configured in the VPP configuration file).

5.5 Testbed
This section is about the design of the testbed that we used to measure the perfor-
mance (e.g., latency and packet loss) of the unmodified and the modified firewall.
With the performance measurements, we can evaluate whether our modifications
yield the expected results.
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Worker Thread 2

Queue 1 (default)
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Figure 5.3: Overview of the priority design with VPP

The testbed consists of multiple components and devices. The network diagram
in Figure 5.4 gives an overview of the devices. On the left-hand side is the packet
generator that is responsible for packet generation and latency calculation. It is
connected with two wires to the timestamping switch that writes timestamps into
the packets flowing through it. The timestamping switch is in turn connected with
two wires to the Device Under Test (DUT), the device running our (modified) VPP
firewall. All testbed devices are also connected to a management switch that we can
use to connect another device to configure the testbed devices.

The arrows on the network diagram indicate the flow of packets during a mea-
surement. They start at the packet generator and flow through the timestamping
switch to the DUT. After packet processing by the DUT, the packets flow through
the timestamping switch on different wires back to the packet generator.

Not shown on the network diagram are additional components we used for the
measurements. The first important component is called internal performance mea-
surements. We implemented this component into VPP. It enables us to measure the
time required exclusively for ACL matching of a packet without additional packet
processing. In addition, internal performance measurements also give us other infor-
mation about packet processing, such as the number of rules that were checked by
the ACL. The other component is the automation of the measurements with scripts
so that various load scenarios can be tested without manual intervention.

In the following, we discuss the packet generator, the timestamping switch, the
DUT, and the mentioned components in detail.

5.5.1 Device Under Test

The DUT is our modified software firewall and can be separated into a hardware
part and a software part. For the hardware part, we use an EAGLE40 industrial
firewall by Hirschmann Automation and Control GmbH. It runs on an Intel Atom
x7-E3950 CPU with 4 cores running at a base clock of 1.6GHz and has 8GB of
RAM. The Gigabit Ethernet network interfaces use Intel I210 Ethernet controllers
that are supported by DPDK.

In its original version, the EAGLE40 comes with its own software (HiSecOS). But
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Figure 5.4: Network diagram of the testbed (the arrows indicate the flow direction
of the packets during measurement)

to install VPP, we replaced the stock software with Ubuntu 20.04 LTS. We replaced
the kernel of the Ubuntu LTS with an Ubuntu kernel compiled by us with version
5.4.151 (we explain why we compiled the kernel in Section 6.6.2). On top of Ubuntu,
we install and configure (our modified) VPP.

5.5.2 Timestamping switch

The timestamping switch is located between packet generator and DUT. It measures
the latency of the packets (i.e., how much time it takes for them to flow through
the firewall). This is done by writing timestamps into a packet before and after it
traverses the firewall, respectively.

5.5.2.1 Hardware

For timestamping, we use an RSPE35 industrial switch by Hirschmann Automation
and Control GmbH. Its ports support a line speed of 1Gbit/s. By default, the switch
does not support timestamping. Hirschmann provided us a slightly modified stock
software for the switch that supports timestamping.

5.5.2.2 Timestamping

The timestamps written to the packets have an accuracy in the range of nanosec-
onds and have a size of 4 bytes, respectively. The maximum period that can be
stored with nanosecond precision is 24·8 = 4294 967 296 ns, that is, just about four
seconds. The timestamps omit the full seconds and only contain the decimal portion
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of the seconds. In other words, the timestamps are always in the range of 0 ns to
999 999 999 ns.

This can lead to overflow: The switch writes the first timestamp to a packet just
before the beginning of a new second (e.g., 0.999 998 s). On its way back, the switch
writes the second timestamp that is part of the following second (e.g., 0.000 015 s).
Normally, we calculate the latency by subtracting the ingress timestamp (packet
towards DUT) from the egress timestamp (packet coming from DUT). But this is not
possible here, the latency would be negative. As a solution, we use Equation (5.6) to
calculate the latency t if the ingress timestamp ti is larger than the egress timestamp
te.

t = te + 1000 000 000− ti (5.6)

Note that the measured latency of the packets does not only include the latency
caused by the firewall itself. It also includes the latency caused by the timestamping
mechanism. We call the latency caused by the timestamping mechanism timestamp-
ing latency. It consists of the latency caused by the transmission of the packets from
the timestamping switch to the firewall and back. The timestamping mechanism it-
self that writes the timestamps to the packet does not cause any additional latency
because it is done in hardware. In our results, we do not subtract the timestamping
latency from the total latency because it is constant and small compared to the total
latency. Therefore, it can be neglected in our results.

Nevertheless, we can calculate the additional timestamping latency tts with Equa-
tion (5.7). The equation calculates the duration to transmit a frame of size sp to
the firewall and back. rl is the line rate in bits per second which is 1·109 bit/s in
our case. We add 20 bytes to the packet size sp in the equation because we must
also consider the additional data and gaps required by OSI layer 1 to transmit an
Ethernet frame (preamble, start frame delimiter, and interpacket gap). Assuming a
packet size of 64 bytes and a gigabit link, we thus calculate a timestamping latency
of 1.34 µs.

tts =
2 · (sp + 20)

rl/8

tts =
16sp + 320

rl
with rl = 1 · 109 bit/s

tts =
16sp + 320

1 · 109

(5.7)

5.5.3 Packet generator

The packet generator puts load on the firewall by generating and sending packets to
the firewall. The firewall forwards the packets back to the packet generator so that
it can process the timestamps in the packets and calculate the latency. This means,
the packet generator is the sender and receiver of the packets.
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5.5.3.1 Hardware

We use a PC as packet generator that we equipped with two additional NICs. It
uses an Intel Core i5 3450 CPU with 4 cores running at a base clock of 3.1GHz and
has 8GB of RAM.

We need two additional NICs because the integrated NIC with a controller by
Realtek is not supported by DPDK. The first NIC uses an Intel 82576 controller
and supports a data rate of up to 1Gbit/s. Although the NIC has two ports, we
need an additional NIC because there were degradations of the throughput if we
load both ports at the same time. The second NIC also supports a data rate of
1Gbit/s and uses an Intel 82574L controller.

5.5.3.2 Software

On the packet generator, we run Debian 11 with kernel 5.10.70. For the generation
of the packets, we use MoonGen [45] which is available open source on GitHub [46].
MoonGen is a scriptable packet generator that can generate a high rate of packets
thanks to the use of DPDK. It can be scripted with the scripting language Lua to
manipulate and process packets as desired.

We wrote a script for MoonGen that meets all our needs. It generates packets,
sends them to the firewall, and receives them again for evaluation. The configuration
is performed mostly using command line arguments (except for the packet pattern).
All notable features of our packet generator script are explained in the following
sections.

5.5.3.3 Packet generation

To simulate different load scenarios, we can configure the packet size and data rate
using command line arguments. During packet generation, we cannot change the
packet size and data rate, but we can adjust the header fields. For example, we can
send packets alternatingly with UDP source port 1234 and 1235. For this, we wrote
a small and basic library that allows setting the header fields for each generated
packet individually.

During our automatic measurements, we want to ensure that we always measure
the latency of the same number of packets. This ensures that our measurements are
comparable. To stop the packet generator at the right time, we added a command
line argument to configure the number of packets to measure. Alternatively, we can
also configure a measurement duration in seconds.

When we put a constant and high load on the firewall, the first packets usually
have a lower latency than the later packets and are not affected by packet loss.
The reason for this is that the ingress queue of the firewall is initially empty and
fills up with packets until the number of packets in the queue settles. Thus, high
latency and packet loss will not affect the initial packets but they will affect all later
packets. The phase at the beginning where the behavior of the measured system is
not equal to the long-term behavior is called transient phase. We added a command
line argument to our MoonGen script to prevent that the transient phase affects our
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measurements. It accepts a duration in seconds that tells our script to start packet
generation but waits for the given amount of time until it measures the latency.

5.5.3.4 Latency calculation

A huge advantage of our script is the on-the-fly extraction of the timestamps out of
the packets. On-the-fly extraction means, the packet generator reads the timestamps
from the packets and then calculates the latency. After calculating the latency, our
script writes the result (start timestamp, end timestamp, and latency) to a CSV
file. The alternative to the on-the-fly extraction would be to save each packet on
the disk and extract the timestamps when the packet generation has finished using
another tool. This has two disadvantages.

The first disadvantage is that the amount of data that is stored on disk is much
larger than if just timestamps and the calculated latency are saved. Our measure-
ment of a packet has only a size of 30 B while a packet is at least twice as large.
Therefore, we save much disk space if we extract the timestamps on the fly and save
the result instead of the whole packets. Additionally, saving whole packets requires
that the disk can keep up writing the packets at the rate of the generated packets.

The second disadvantage is the additional time that we need to spend on the
measurements because an additional step is required. First, the packet generator
performs the measurement and after that, another tool must extract the timestamps.

On the other hand, on-the-fly timestamp extraction requires more processing dur-
ing the measurement. But timestamp extraction runs on a different CPU core than
the packet generation. Thus, timestamp extraction only slightly reduces the max-
imum rate of packets that can be generated and received again by the packet gen-
erator. The reason for the reduction is that packet generation can generate more
packets per second than the timestamp extraction can process. Hoswver, since the
difference is small, the timestamp extraction reduces the maximum data rate that
our packet generator can process only by a few Megabits per second.

5.5.3.5 Packet loss measurement

In addition to the latency calculation, our packet generator also measures the packet
loss and saves the result in a CSV file. For this, it uses the number of sent and
received packets. But there is a small error in the calculated packet loss in the
range of a few packets, depending on the packet rate. This is because we could
not perfectly synchronize the counting of sent and received packets. There are two
reasons for this:

The first reason applies if the packet generator is configured to skip the transient
phase. In that case, some packets were already sent before the beginning of the
measurement and they are therefore not included in the number of sent packets.
But the same previously sent packets are included in the number of received packets
when they arrive after the measurement started.

The second reason is that some packets were sent right before the measurement
was stopped and are therefore included in the number of sent packets. But they
are not included in the number of received packets because they arrive when the
measurement was already stopped.
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5.5.4 Internal performance measurements

We already explained the latency measurements using the timestamping switch (ex-
ternal performance measurement). But we also added some code to VPP that allows
us to measure the duration of the ACL checks (internal performance measurement).
The accuracy of the measurements lies in the range of nanoseconds and they can be
enabled and disabled via CLI and API.

For the internal performance measurements, we had to find a balance between
flexibility and impact on the packet latency. The result is that we can only measure
a predefined number of packets per measurement. We must configure the number of
packets that VPP should measure when we enable the measurements. As a result,
VPP overwrites old measurements if more packets arrive than measurements can be
saved. When we disable the measurements, VPP saves the result as a CSV file on
the disk.

The internal measurements measure not only the latency but also save other help-
ful information about each packet, mostly about ACL processing. In the following,
we explain all measured information except the latency.

Thread index The thread index shows which worker thread processed a packet.
We can use it to see whether the packet classification of the NIC works and to track
the packet latency on the specific worker thread (i.e., packets applying to specific
priority list rules).

Adaptive time limit The adaptive time limit measurement shows the value of
the adaptive time limit that VPP calculated for a packet. It helps us to tune the
adaptive time limit control because we can analyze how the controller behaves if the
packet rate (i.e., firewall load) changes.

Effective time limit The effective time limit measurement shows whether VPP
used the adaptive time limit or the configurable time limit to limit ACL processing
of a packet. If the effective time limit and adaptive time limit are equal, the adaptive
time limit was used. If the effective time limit and adaptive time limit differ, the
configurable time limit was used.

Number of processed rules The number of processed rules shows how many
ACL rules VPP was able to process within the effective time limit. It equals the
position of the matching rule if VPP found a matching rule within the time limit.
Otherwise, it equals the number of rules that VPP was able to check before the time
limit exceeded. Knowing the number of processed rules helps us to find a balance
between the length of the time limit and security. So we can estimate how many
rules are most likely matched by VPP if we configure a certain time limit. But this
value is largely dependent on the processing power of the firewall and only applicable
to the specific firewall model.

Index of the matched priority list rule The index of the matched priority list
rule measurement shows which rule in the priority list matched the packet. It helps
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us to identify whether a packet was a priority packet or a non-priority packet. As a
result, for example, we can analyze the latency of non-priority packets and priority
packets independently of each other.

Vector size The vector size can be used to estimate the load on the firewall. This
helps us to analyze the change of latency and adaptive time limit based on the fire-
wall load. Note that multiple packets in a row have the same vector size if it is larger
than 1 because these packets were in the same vector. For example, if the vector
size is 3, three packet measurements in a row have the same vector size. This must
be considered when calculating, for example, the average vector size. To calculate
the correct statistics, the duplicated vector sizes must be removed first.

To sum it up, internal performance measurements yield a lot of helpful informa-
tion. They help to analyze how the firewall behaves in different scenarios and to
improve its behavior based on the results. But care must be taken to keep the
performance impact of the internal measurements on the packet latency low. We
analyze the performance impact of our internal performance measurements on the
firewall in Section 7.4.

5.5.5 Automation

Starting various measurements with different packet sizes, data rates and a different
number of ACL rules to simulate different load scenarios is tedious. But it is impor-
tant to evaluate the success of the implementation after each implementation step
(e.g., after the implementation of an idea). Because of this, we wrote a bunch of
scripts using the scripting language Python that automatically performs measure-
ments with configurable parameters. In addition, the scripts also create a report, so
we can get an overview of the latency at a glance. The report consists of statistics
(e.g., mean and maximum) and various plots of the measurements. It is also possible
to create a report that compares two measurements with each other using statistics
and plots. In the following, we present those scripts to give a brief overview of them.
We also show what ACL and priority list rules we configure on the DUT.

5.5.5.1 Main script

The main script orchestrates all other scripts and the devices. It is also the central
point for configuration. We can configure the script at each start with the needed
configuration.

Based on the configuration, the main script starts the other scripts with different
configuration options or it does not start them at all. Another task of the main
script is to download the measurement results from the packet generator (external
performance measurements) and the DUT (internal performance measurements).
To download the results, the main script uses SFTP.

The main script can be started from any device as long as it is connected to
the management switch. This means, the main script must configure the packet
generator, the timestamping switch, and the DUT remotely using SSH. The main
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script expects that some helper scripts are placed on the remote devices and on the
local device. Their location and the IP addresses as well as the credentials of the
devices are currently hardcoded in the scripts. Our main priority was to make them
work for our specific setup, not to keep them flexible. But extending the scripts
later to make them more flexible is possible.

5.5.5.2 ACL installer script

We use the ACL installer script to add and delete ACL rules, priority list rules, and
to enable or disable internal performance measurements (including the number of
internal packet measurements to store). Thus, it is not only responsible to configure
the ACL as the name suggests. The script is placed on the DUT and connects to
VPP’s binary API to configure it.

5.5.5.3 Report generator script and diff report generator script

We developed two different report generator scripts. We call the first script report
generator because it generates a report about the just performed measurements.
We call the second script diff report generator because it generates a report that
compares two bunches of measurements. Usually, we compare the just performed
bunch of measurements with another bunch of measurements. The main script
uses both report generator scripts twice, for external and for internal performance
measurements.

The reports consist of statistics about each measurement (packet loss, mean la-
tency, median latency, min latency, max latency) and various plots that are in parts
similar to the plots shown in this thesis. The diff reports use fewer plots and instead
focus on comparing the statistics of two different bunches of measurements (e.g.,
change of mean latency).

To create nice-looking reports as easily as possible, we use Jupyter notebooks that
we wrote in Python. Jupyter notebooks support all features we need like determining
the presentation of the results and exporting them in a portable format. But instead
of manually running Jupyter, the main script invokes it automatically to render the
notebooks as HTML files so that the results can be viewed in the browser.
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In the last chapter, we discussed the design of the ideas that we initially presented
in Section 2.4. In this chapter, we present how we implemented the ideas in VPP.
We also discuss how we make sure that our implementation increases the latency
and jitter as little as possible.

6.1 Measuring and limiting the ACL processing
time

In order to implement the timebound idea to stop ACL processing after a given time
limit, we must know how long the ACL processing is already ongoing. For this, we
first get the current time that we then use to check whether the time limit exceeded.

6.1.1 Getting the current time

VPP offers two functions that we can use to get the current time. First, we can use
the clib_time_now function1. It returns the number of seconds since VPP started
with a precision of 1 µs [47].

An accuracy in the range of microseconds is not exact enough for us because
packets must be forwarded in less than a microsecond if the packet rate is high (see
our discussion about interarrival times in Section 2.3). Therefore, we use the second
function that VPP offers, the clib_cpu_time_now function. It returns the number
of CPU clock cycles since the CPU was started. To get the number of clock cycles,
clib_cpu_time_now uses a CPU instruction that is called rdtsc on x86 CPUs. Its
accuracy is dependent on the CPU frequency. Assuming a frequency of 1.6GHz,
we get an accuracy of around 0.625 ns (this is the period of one clock cycle). Since
current CPU models count the clock cycles based on the CPU’s base frequency, we
can convert clock cycles to seconds or vice versa. VPP reads the base frequency and
makes it available in the code.

6.1.2 Limiting the ACL processing time

Figure 6.1 shows how we extended the ACL matching logic explained in Section 3.3.3.8
to limit the ACL processing time (the two extensions are highlighted in green). In

1Bonus info (optional): In VPP, we do not get the current time from the kernel. Instead, VPP
gets the time from the kernel approximately every 16 seconds and interpolates it in between
using the (less accurate) CPU clock [47]. VPP does this to avoid expensive system calls. In
addition, VPP ensures that the clock is monotonic and therefore resistant to changes of the
system time (i.e., the time does not go backward).
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the first extension (the upper green box), we added some code before the actual
ACL matching loop. We use this code to calculate, out of the given time limit,
the point of time in the future after which the matching should be stopped. We
do this by converting the time limit from seconds to the number of clock cycles by
multiplying it with the number of clock cycles per second. Then we get the current
time using clib_cpu_time_now and add the converted time limit to it. The result
is the number of clock cycles after which matching should stop. We store the point
of time in clock cycles, not in seconds because we compare it later with the output
of clib_cpu_time_now and thus do not need to convert it. Listing 6.1 shows the
above calculation as pseudo code.

1 time_limit_clocks =
2 clib_cpu_time_now () + time_limit * clocks_per_second;

Listing 6.1: Calculation of the point of time at which matching should stop

Our second extension of the code is inside the matching loop and is executed
before the matching of each rule (the lower green box in Figure 6.1). It is the place
where we check whether the time limit exceeded. The check is very short so we
can show it in Listing 6.2. We only compare whether the current number of clock
cycles is larger than the point of time in clock cycles that we calculated earlier using
the time limit. If the latter is true, the time limit exceeded, we store the next
rule that must be matched (for analyze later), and stop matching. In addition, we
check whether the variable check_time_limit is true. It allows us to check the
ACL without time limit in case it is needed. Because the matching function is an
inline function, the check whether to enable or disable the time limit produces no
overhead. Instead, the compiler “hardcodes” it (as long as we assign a constant value
to check_time_limit).

1 if (check_time_limit
2 && (clib_cpu_time_now () > time_limit_clocks))
3 {
4 // Time limit exceeded
5 // Store next rule that must be matched and stop matching
6 }

Listing 6.2: Code that checks before each rule check whether the time limit exceeded

We tried to keep the additional processing, required to check the time limit, as
low as possible. Therefore, we calculate the point of time and convert it to clock
cycles beforehand. So we can reduce the time limit check during matching to a
comparison of the current time with a future point of time.

In summary, by checking the time limit before the matching of each rule, we can
detect the exceeding of the time limit very soon and stop further matching. But
we only limit the execution of stateless filtering – stateful filtering is not included.
However, since stateful filtering causes only a small and constant delay, this is no
drawback.

Even though we implemented the time limit checks as lightweight as possible,
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Figure 6.1: Flowchart showing the ACL plugin matching mechanism with additional
matching time limitation (green)
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they still require some processing that is not neglectable in comparison to ACL
matching. For example, if the matching of a rule (see the flowchart in Figure 3.11
on page Page 41) already ends after the IP version or the destination IP check, the
fraction of instructions for the time limit check is significant. On the other hand, if
the matching of a rule traverses the whole matching code, the fraction of instructions
for the time limit check is small. In Section 7.5.1, we measure the impact of the
time limit check on latency to get an overview of the performance impact.

6.2 Timebound
In this section, we build upon the capability of limiting the ACL processing time that
we presented in the last section – this means, we focus on the implementation of how
we determine the actual time limit. More precisely, we discuss the implementation of
the configurable time limit and the adaptive time limit whose design we presented in
Section 5.2. Moreover, we discuss the implementation of analyze later that continues
ACL processing in the background (the design of analyze later can be found in
Section 5.2.3).

6.2.1 Configurable time limit

The configurable time limit limits the ACL processing time of packets based on the
flow to which they belong. To configure which flows should be limited to which
duration, we introduced the priority list.

We decided to design and implement the priority list similar to the ACL plugin’s
ACL because it offers flexible rules. Nevertheless, it is still possible to extend the
priority list with more fields like the VLAN ID. The difference between the ACL and
the priority list is that we replaced the action field with a time limit field. Moreover,
the ACLs can be assigned to interfaces, while this is not possible with the priority
list. Instead, the priority list is only one single list that contains all rules and does
not differentiate between interfaces.

To allow the configuration of the priority list, we added two API endpoints. One
to add rules to the priority list (this deletes all previous rules) and one to delete
all rules from the priority list. These two endpoints are the minimum required
endpoints. While they are not flexible, they are sufficient for our measurements in
Chapter 7. It is possible to extend the API endpoints in the future and to add CLI
commands.

We added the priority list check just before the ACL check as Figure 6.2 illustrates
(the priority list check is highlighted in green). If a rule in the priority list matches,
it returns the time limit. Otherwise, it returns infinity as time limit (this is possible
because we use floating point values).

We can then use the time limit either in conjunction with the adaptive time limit
or we use it directly to limit the stateless ACL check. In the latter case, we must
turn the time limit for the ACL check off instead of passing infinity (using the
check_time_limit variable as described in Section 6.1.2).
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6.2.2 Adaptive time limit

The time limits determined by the configurable time limit can be too long if the
packet rate dynamically changes. Therefore, we designed the adaptive time limit in
Section 5.2.2. It adapts the time limit to the current firewall load so that packets
do not delay following packets for too long.

6.2.2.1 Measuring the firewall load

Among the different possibilities to measure the firewall load that we introduced in
Section 5.2.2.1, we decided to use the vector size. However, we use a slightly different
implementation that is simpler to implement. We measure the vector size inside the
ACL processing node instead of directly at the ingress queue. As a result, we only
take vectors into account that traverse the ACL. As explained in Section 3.3.3.3,
vectors only traverse the nodes they need to. If they originate from a port that
has no ACLs assigned, they do not traverse the ACL processing node. This means,
that we do not measure the real firewall load in some cases. One case would be, for
example, if the packet rate at a port is high but it has no ACLs assigned so that
the large vectors do not traverse the ACL. In the ACL process node we would only
see small vectors from ports with a low packet rate and thus wrongly assume a low
firewall load.

In addition, with our implementation we ignore the fact that the vectors can
originate from different ports. If the vectors originate from different ports, they
can have a different size depending on the packet rate at that port (as explained in
Section 5.2.2.1). This means that we get large and small vectors mixed together so
we derive a varying firewall load from them. But in reality, the firewall load was
constantly high, we only processed a vector from a port with a small packet rate.

The mentioned problems of our implementation are problematic in production
environments but during our latency measurements we use only one port and all
packets traverse the ACL. Therefore, we always derive the correct firewall load. The
correct implementation would be to measure the vector size at the input nodes and
then choose the largest of them as explained in Section 5.2.2.1.

6.2.2.2 Calculating the adaptive time limit

Figure 6.2 shows the locations of the ACL plugin where we implemented the adaptive
time limit in yellow. Most processing happens before we iterate over the packets
in the vector, that is, only one time for all packets in the vector (see the top left
yellow process in Figure 6.2). There we measure the vector size and calculate the
adaptive time limit because the vector size is the same for all packets in the vector.
Thus, the adaptive time limit is also the same for all packets in the vector. The
calculation of the adaptive time limit is exactly the same as we already described in
Section 5.2.2.2: we use a P controller to calculate a time limit between 0.2 µs and
2 µs.

There is one small step that we still perform for each packet, but only in case
we use the adaptive time limit in combination with the configurable time limit (see
the yellow process on the right in Figure 6.2). To get the configurable time limit,
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we must check the priority list for each individual packet. This means, we have a
different configurable time limit for each packet. According to Equation (5.5) on
Page 52, we must choose the smaller of the two time limits to limit ACL processing.
Therefore, we must determine the minimum of them for each packet individually.

6.2.3 Analyze later

If the time limit for the ACL check exceeds, analyze later continues the ACL check in
the background so that the firewall can forward the packet without complete check.
In Section 5.2.3, we pointed out that analyze later should run on a different CPU
core, or specific to VPP, in a process node running on the main thread. This ensures
that packet processing stays unaffected from analyze later. But we must take care
that the communication between the ACL processing node and the analyze later
node is as efficient as possible to delay the packets as little as possible.

6.2.3.1 Analyze later buffer size

The ACL processing node passes information about packets to check to the analyze
later node using the analyze later buffer. While it would be favorable if the analyze
later buffer had an unlimited amount of space, we have to limit it to a static number
of entries to keep the performance impact minimal. In our implementation, the
analyze later buffer can store up to 1 000 000 entries. We could increase its size
further, but for our measurements this value is sufficient. It is easily possible to
adjust the analyze later buffer size during compile time.

There are two reasons why we decided to make the analyze later buffer size static.
The first reason is the performance cost of resizing the buffer dynamically during
runtime. If we make the size of the analyze later buffer dynamic and we add an
element to the buffer but the static array in the background is full, VPP must copy
all data to a new location in memory. Because the analyze later buffer size is in
the range of tens of Megabytes, this takes some time and blocks packet processing
in the meantime. The result is an increased latency and an increased jitter. With
a static buffer size, the memory is preallocated and VPP never needs to copy the
buffer entries to another location.

The second reason why we decided to make the analyze later buffer size static
is to prevent out-of-memory situations. If we make the analyze later buffer size
dynamic, VPP can allocate an arbitrary amount of memory for the buffer if many
entries must be stored. In worst case, the analyze later buffer allocates so much
memory that almost no more memory is left (or there is no contiguous space left
to store such a large array). This can hinder other VPP functions from allocating
new memory for data structures so that errors occur. To prevent VPP from running
out of memory, we should limit the buffer size so the buffer allocates a reasonable
amount of memory. Making the buffer size static is the easiest way to limit the
buffer size and ensures, the requried memory is always reserved and available.

In Section 5.2.3.2, we listed what information about a packet must be passed to
analyze later. Since our buffer has a capacity of 1 000 000 packet information entries,
the size of an individual entry has a significant impact on the memory consumption
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Data Size
5-tuple, TCP flags 60B
ACLs that must be checked (pointer) 4B
Next rule and corresponding ACL that must be checked (indexes) 8B
Total 72B

Table 6.1: Amount of memory required to store the packet information of one packet
for analyze later

of the buffer. Table 6.1 lists the memory requirement in bytes for each type of
data of which a packet information entry consists. In total, one entry in the buffer
requires 72 bytes of memory which makes our buffer to use 72MB of memory.

6.2.3.2 Accessing the analyze later buffer

Our analyze later buffer implementation uses the ring buffer structure offered by
VPP. A ring buffer is like a queue, it has a beginning and an end. The regular ring
buffer operations are enqueue (append entry at the end), peek (read first, i.e., oldest
entry), and dequeue (delete first entry). This is ideal for us because we can enqueue
the packet information at the end of the buffer and then read and delete it in the
order we enqueued it. If it is really needed, we could also access any entry in the
middle of the buffer (but we do not make use of this).

Another advantage of the ring buffer, besides the processing in the order in which
we enqueued the entries, is the constant and short access time. All regular ring
buffer operations above have a time complexity of O(1). This means, we introduce
no jitter through the buffer access. And because the operations are very simple, the
access is very fast.

However, the buffer access time is not the only delay when accessing the analyze
later buffer in our case. Both, the ACL processing node and the analyze later node
access the analyze later buffer from two different threads. But parallel access by
both nodes could leave the buffer in an inconsistent state or could return invalid
data if the timing is unfavorable. Therefore, we must prevent that both nodes can
access the buffer at the same time. To do this, both nodes lock the buffer before
they access it and unlock the buffer after accessing it (we use the spinlocks that
are already available in VPP). Listing 6.3 shows an excerpt from the VPP source
code how we lock the analyze later buffer before accessing it and unlock it after we
finished accessing it.

If a node tries to lock the buffer if it is already locked, it must wait until the buffer
is unlocked again. This is an active wait, meaning, the node does nothing else but
waiting for the buffer being unlocked. As a result, packet processing cannot continue
if the ACL processing node tries to lock the analyze later buffer while the analyze
later node already locked the buffer. The consequence is an increased packet latency
and an increased jitter. But because the ring buffer operations are very fast, the
nodes must only lock the buffer for a short time. Therefore, the impact on latency
and jitter is small. We evaluate the impact on the latency and jitter in Section 7.6.
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Single-core Multi-core
Suspend time 11 µs 15 µs
Runtime limit 0.4 µs 400 µs

Table 6.2: Amount of time that the analyze later node suspends/operates in single-
core and multi-core mode

1 // Lock buffer (and actively wait if buffer is already locked
2 // until it is unlocked again)
3 clib_spinlock_lock_if_init (& analyze_later_buffer_lock);
4
5 // Delete oldest analyze later buffer entry
6 clib_ring_deq(analyze_later_buffer);
7
8 // Unlock buffer
9 clib_spinlock_unlock_if_init (& analyze_later_buffer_lock);

Listing 6.3: Example of accessing the analyze later buffer and locking it before (from
the VPP source code)

6.2.3.3 Analyze later node

The analyze later node is responsible for background ACL checks. It is a process
node and thus runs on the main thread. Process nodes share their resources with
other nodes, so we must make sure not to block other nodes for too long (see
Section 3.3.3.6 for more information about how VPP schedules nodes).

Analyze later node scheduling To control the analyze later node run time, we
define a suspend time and a runtime limit. The suspend time determines how long
the analyze later node suspends until the VPP scheduler wakes it up again. The
runtime limit determines how long the analyze later node is allowed to run, or more
precisely, how long the ACL checks should maximally run in total.

We set the suspend time and runtime limit differently based on whether VPP
runs on a single core or on multiple cores. Table 6.2 shows the exact values. If VPP
runs on a single core, the analyze later node must share the processing resources
with the packet processing nodes. To prevent high latencies, we set the runtime
limit much lower than in multi-core mode to block the packet processing as little as
possible. We also reduce the suspend time to compensate for the reduced runtime
limit. But we have to set the suspend time to at least 10µs because VPP interprets
all values below 10µs as zero and does not suspend. As a result, the analyze later
node runtime is too short for background ACL processing in single-core mode if we
expect a high rate of packets. Additionally, we already stated the contradiction of
running analyze later on the same core as packet processing in Section 5.2.3.1. Thus,
we do not recommend running VPP on a single core.

There are two drawbacks due to the analyze later node scheduling. Since the ana-
lyze later node always suspends for a configured amount of time, it cannot instantly
continue processing if the ACL processing node enqueued new packet information.
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Additionally, the analyze later node wakes up unnecessarily even if no packet in-
formation is available to process. As a solution, VPP also offers a feature to wake
up process nodes using events. We first wanted to use this feature in combination
with the suspend feature. This means, the ACL processing node uses the event
feature to wake up the analyze later node if there are packets to process. Addi-
tionally, the analyze later node can suspend and wake up by itself if it could not
finish background ACL processing within the runtime limit. But we cannot use the
event feature because it can only be used in single-core mode if the ACL processing
node and the analyze later node run in the same thread. Thus, we have to use the
polling-based approach and analyze later starts delayed with background processing
instead of getting notified by the ACL processing node.

Analyze later node operation Figure 6.3 shows how the analyze later node
operates. After waking up, it enters the background ACL check loop (this is not
the process node’s main loop). The background ACL check loop runs as long as the
runtime limit did not exceed and as long as packet information is available in the
analyze later buffer. To keep track of the remaining node runtime, the analyze later
node has a remaining time variable that it sets to the runtime limit after waking
up. If packet information is available and the time limit is not exceeded, the analyze
later node gets the oldest packet information entry from the analyze later buffer.
Using the packet information, it starts the ACL check with the time limit set to
the remaining time that the node is allowed to run. Analyze later runs the same
code for the ACL check as the ACL processing node. If the check is finished, the
analyze later node updates the remaining time by subtracting the duration of the
ACL check (the ACL check returns how long it ran). If the analyze later node
could complete the ACL check within the time limit, it deletes the corresponding
packet information from the buffer. Based on the ACL action, the analyze later node
should, according to our design, log wrong decisions. But we did not implement the
logging of wrong decisions and instead increment counters. We explain more about
this in Section 6.2.3.4. At this point, the analyze later node finished the background
ACL check of a packet and returns to the beginning of the background ACL check
loop. Depending on the remaining time and available entries in the analyze later
buffer, it checks another packet or suspends.

6.2.3.4 Reaction to wrong decisions

According to the timebound idea (see Section 2.4.1), we should log wrong forwarding
decisions. But we did not implement logging because we focused on implementing
the ideas in a way so we can measure their impact on latency and jitter. Logging
can be implemented in future and does not affect the latency and jitter of packet
processing as long as analyze later runs on a different CPU core. When analyze later
and packet processing run on the same CPU core, the latency and jitter increase
depends on the logging mechanism.

To be able to at least track the number of correct and wrong decisions, we use
counters that are already available in VPP. We have two counters, one to count
correct decisions (ACL action was allow) and another one to count incorrect decisions
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Figure 6.3: Flowchart showing the analyze later node structure
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(ACL action was block). For each correct or incorrect decision, the analyze later
node increments the corresponding counter by one (see Figure 6.3). The counter
values can be checked using the CLI (with the command show errors).

6.2.3.5 ACL processing node

Figure 6.2 (see Page 74) shows how we extended the ACL processing node to support
analyze later (the analyze later parts are highlighted in red). After the ACL check,
the ACL processing node checks whether the time limit exceeded. If that is the
case, it checks whether the analyze later buffer has space left (we omitted this in
Figure 6.2). If the analyze later buffer has space left, the ACL processing node adds
the packet information to the analyze later buffer.

If the analyze later buffer has no space left, the ACL processing node should drop
the packet according to our recommendation in Section 5.2.3.2. But we decided
not to drop the packets in our implementation because it would interfere with our
latency measurements. Since our measurements put a constant and, depending
on the measurement, high load on the firewall, the buffer would fill quickly and
packet loss would occur. But with packet loss, we would not be able to perform
our latency measurements because we need the packets to calculate the latency and
other statistics. To at least keep track of how many packets cannot be processed by
analyze later, we increment a counter for each packet that cannot be added to the
buffer because it is full.

6.3 Passive
We did not implement any additional features in order to support the passive idea.
Instead, we use the timebound idea to configure a time limit of zero using the config-
urable time limit. This has the disadvantage that VPP still executes the ACL check
code up to the point where the time limit is checked. As a result, there is a small
overhead because the adaptive time limit calculation (if it is implemented) and the
initial code to start the ACL check are executed. But since this is a proof of concept
and we already save time through the omitted ACL check, this implementation is
sufficient.

6.4 Priority
We already explained in Section 5.4 that the priority idea works best if we separate
high-priority and non-priority packet processing to run on different CPU cores. The
firewall does not classify and separate the packets by itself in this case. Instead, we
configure the NIC to classify the packets and place them in different queues. In this
section, we explain how we modified and configured VPP to achieve this.
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6.4.1 Configuration of VPP

We must extend the VPP configuration to tell VPP on how many CPU cores it
should run and how many ingress queues it should create for each port. Listing 6.4
shows the relevant parts from the configuration file at the example of our testbed.

In the cpu section, we configure VPP to create two worker threads using the
workers parameter. As a consequence, VPP requires three CPU cores to be available
on the system (the main thread runs on one of the three cores).

Even though we changed the number of worker threads, VPP creates only one
ingress queue per port. We must configure the queues for each port individually
in the dpdk section. In our case, we configure one port to have two ingress queues
using the num-rx-queues parameter. When we run VPP with this configuration,
VPP configures the NIC to enable RSS. With RSS enabled, the NIC distributes the
packets among both queues. However, we do not want such behavior because our
goal is to place all packets in the default queue unless we configure VPP otherwise.
Because of this, we “disable” RSS by configuring VPP to only use the first queue
(queue 0) for RSS. We do this with the parameter rss-queues.

1 cpu {
2 # Configure VPP to create two worker threads
3 workers 2
4 }
5
6 dpdk {
7 # This port transmits packets only
8 # So we do not need multiple ingress queues
9 dev 0000:06:00.0

10
11 # This port receives the packets from the packet generator
12 # Ports are addressed using the PCI adress in the config
13 # (not with the port id used in VPP)
14 dev 0000:05:00.0 {
15 # Configure two ingress queues
16 num -rx-queues 2
17 # "Disable" RSS
18 # Ensures the NIC places all packets in queue 0 by default
19 rss -queues 0
20 }
21 }

Listing 6.4: Relevant parts of the VPP configuration to be able to separate high-
priority packets (at the example of our testbed)

6.4.2 Priority list

We already explained in Section 5.4.2.1 that we use the priority list to configure
which packets the NIC places in which queue. For this, we extend the priority list
with a field for port-queue pairs. With port-queue pairs, we can specify for each
port individually in which queue the NIC should place matching packets.
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Src IP Src port Dst IP Dst Port Proto TCP
flags

Time
limit port queue

10.0.1.2 - 10.0.2.2 8080 UDP - 0.6 µs 0 1
10.0.2.1 - 10.0.3.2 8098 UDP - 1.0 µs 1 1
10.0.3.2 - 10.0.2.5 8099 TCP - 1.5 µs 0 1
10.0.2.5 8099 10.0.3.2 TCP - 1.5 µs 1 1

Table 6.3: Example of a priority list in our implementation that supports a single
port-queue pair per rule

Ethernet Header

EtherType

IPv4 Header UDP Header

Src IP Dst IPProto Src Port Dst Port

Byte StringByte StringByte StringByte StringByte StringByte String

Figure 6.4: Visualization how the RAW pattern items match the 5-tuple fields of a
packet. Each byte string belongs to a RAW pattern item.

However, we simplified the configuration of port-queue pairs in our implementa-
tion. Instead of multiple port-queue pairs, we only support one port-queue pair per
priority list rule. As a consequence, we can only configure one port per priority
list rule that supports the prioritization of matching packets. Since the firewall in
our testbed only receives high-priority packets on one port, this is no limitation for
our latency measurements. Table 6.3 shows the fields of the extended priority list,
including a few example rules.

6.4.3 Representation of the priority list on the NIC

We use DPDK’s generic flow API (see Section 3.3.2.2) to configure the priority list
rules on the NIC. As we already explained in Section 3.3.2.3, the generic flow API is
very limited on the I210 Ethernet controller that our firewall NIC uses. To support
the priority list as much as possible, we used the flex filter to recreate an ACL.

This means, when VPP configures a rule on the NIC, it creates a flow rule whose
matching pattern consists of multiple RAW pattern items. We use a separate RAW
pattern item for each header field that we match:

• EtherType (to check whether the packet is an IPv4/IPv6 packet)

• Source IP address

• Destination IP address

• IPv4 protocol/IPv6 Next Header

• UDP/TCP source port

• UDP/TCP destination port

This way, we can dynamically include or omit a matching pattern in the flow
role based on whether the ACL rule defines a value for the ACL field. Figure 6.4
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also visualizes how the RAW pattern items match the header fields. Each byte string
in the figure belongs to one RAW pattern item and is positioned in a way that it
overlaps the corresponding header field in the packet. For all flow rules, we set the
ingress attribute to signify that the NIC should apply the rule in ingress direction.
As action, we set the QUEUE action and specify the queue that is given in the priority
list rule.

With this recreation of an ACL, we support the matching of IP addresses, the
protocol, and the ports. Due to the limitations of the flex filter, we cannot support
the following ACL features:

• IP address ranges are not supported (only a single source and destination
address, respectively)

• Port ranges are not supported (only a single source and destination port,
respectively)

• The position of fields in the packet must not be shifted (shifts are caused
by, e.g., a VLAN tag or IPv4 header options that are inserted between other
headers)

• TCP flags are not supported because we could only match the whole byte, not
single bits

If an ACL rule defines these unsupported features, VPP ignores them when con-
figuring the NIC. For example, if a rule defines the IP network 10.1.1.0/24, VPP
configures the IP address 10.1.1.0/32. Moreover, we did not handle the case if too
many priority list rules are configured that cannot be stored on the NIC due to the
limit of eight flow rules. Except for a log message, we silently ignore such a case.
While these limitations are too restrictive on a production firewall, it is sufficient
for our proof of concept. For production firewalls, we recommend using another
NIC with an Ethernet controller that supports 5-tuple matching and that can store
more flow rules. Or as an alternative, we could switch to VLAN tag matching (e.g.,
the VLAN priority) which is supported by the I210 controller according to its data
sheet [23].

6.4.4 Automatic NIC configuration

Every time an administrator adds or deletes priority list rules, VPP must reconfigure
the corresponding NIC to match the updated priority list rule(s). In other words,
VPP must configure or delete the flow rules on the NIC. VPP already includes
functions to manage flow rules. These functions abstract the generic flow API and
keep track of the rules that VPP configured on the NIC. Keeping track means that
these functions store or delete references to the flow rule objects in the memory so
that VPP remembers which rules it configured on the NIC. This ensures that we
can configure flow rules on the NIC and delete them again using the reference to
the flow rule object.

VPP also includes functions to create flow rules. However, VPP uses many pattern
item types that the NIC model of our firewall does not support (or does only support

84



6 Implementation

partially). Therefore, we added another function that accepts a priority list rule and
creates a flow rule according to the flex filter (as explained in the last section). We
can then use the other functions already available in VPP to configure the created
flow rule on the NIC or to delete it.

6.5 Internal performance measurements
As we already described in Section 5.5.4, we measure the duration of the ACL
check and collect other information about each packet using internal performance
measurements. In this section, we show how we measure the duration of the ACL
check and how we buffer the measurement results.

Figure 6.5 shows where we start and stop measuring the duration in green. We
start before the priority list check and stop after adding the packet information to
the analyze later buffer. As a result, we measure the duration of the configurable
time limit (priority list check and choosing the minimum time limit), the ACL check,
and analyze later (the part that runs in the ACL processing node).

To measure the duration, we use the clib_cpu_time_now function that we also
use to measure and limit the ACL processing time (see Section 6.1). This means,
we get an accuracy in the range of nanoseconds. We call the clib_cpu_time_now
one time when we start measuring the duration to get the start time and one time
when we end measuring the duration to get the end time. After getting the end
time, we calculate the duration by subtracting the start time from the end time.
At this point, we also get other information about the packet like the thread index
and the adaptive time limit. Finally, we enqueue the measurement result to a ring
buffer.

We try to keep the performance overhead of the internal performance measure-
ments as low as possible. Because of this, we allocate a static ring buffer. We can
configure its size when we enable the measurements using the CLI or API. A buffer
with a static size prevents sporadic delays caused by increasing the buffer size if no
more space is available in the buffer. This is the same effect as with the analyze
later buffer in Section 6.2.3.1. The disadvantage is that if the buffer is full, VPP
begins overwriting the oldest measurements in the buffer. We compensated for this
drawback, as written above, by allowing to configure the desired buffer size when
enabling the measurements. We do not set any limits regarding the buffer size but
the amount of available memory on the firewall should be kept in mind. One entry
(i.e., measurement result) in the buffer occupies 64 bytes of memory, this means, a
buffer for 1 000 000 entries occupies 64MB of memory. To compare, our firewall has
8GB of memory available. Only when we disable the internal performance measure-
ments, VPP saves the measurement results to a CSV file. This prevents any delays
due to file access during the measurement.

If VPP runs multiple threads, it creates multiple buffers for the internal perfor-
mance measurements (one for each worker thread and also one for the main thread).
This way, we prevent that multiple threads access the same buffer. If multiple
threads shared the same buffer, we would have to use locks to prevent parallel buffer
access by the threads. This is also the reason why we do not write the measurement
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results to a file with the main thread at the same time as the worker thread enqueues
the measurement results to the buffer. However, one buffer per thread also means
that we multiply the memory consumption of the buffers because all buffers have
the same size, independent of the number of threads.

6.6 Kernel configuration tweaks to improve VPP
performance

If we run VPP on a Linux-based distribution with default settings, we leave some
unused potential regarding performance. With some tweaks to the Linux kernel
configuration, we could further reduce the jitter when running VPP. In this section,
we discuss the configuration changes we made to the Linux kernel. We present the
results of the optimization in Section 7.3. Our inspiration for the configuration was
a paper by Stylianopoulos et al. [35] and the FD.io Wiki [48]. We examined their
suggestions and evaluated which of them reduce the jitter.

All following configuration changes can be made by configuring the kernel pa-
rameters that are applied at system startup. They can be usually configured in
/etc/default/grub with the GRUB_CMDLINE_LINUX_DEFAULT parameter (at least
in Ubuntu and Debian). For example, we use the configuration shown in Listing 6.5
on our firewall.

1 GRUB_CMDLINE_LINUX_DEFAULT = isolcpus =1-3 nohz_full =1-3 \
2 rcu_nocbs =1-3 intel_iommu=enable iommu=pt

Listing 6.5: Linux kernel parameters that we configured on our firewall in the testbed
(excerpt from the /etc/default/grub file)

6.6.1 CPU core isolation

By default, Linux schedules tasks on all available CPU cores. This means, Linux
periodically suspends running tasks to run other tasks. This also affects VPP which
means that packet processing interrupts periodically. As a consequence, the latency
of some packets increases which in turn increases jitter.

As a solution, we can tell Linux not to schedule tasks on certain CPU cores. We
do this with the isolcpus kernel parameter by assigning it the list of CPU cores
that should be excluded from scheduling [49]. With the parameter configured, Linux
no longer runs any tasks on the given CPU cores. Instead, we must manually assign
tasks to these cores (which VPP does automatically).

Note that the isolcpus parameter is deprecated and instead cpusets should be
used [49]. However, we still used the isolcpus parameter because the cpusets
configuration is more complex and it would have taken considerably more time to
get it running2.

2We find that cpusets are more complex because they are configured during runtime while the
isolcpus parameter takes effect at boot time. This has the effect that we have to move already
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6.6.2 Reducing the number of interrupts

Although we disabled scheduling on the CPU cores on which VPP runs, Linux still
suspends the running task periodically because of interrupts that occur on the CPU
core. We observed between 10 and 100 interrupts per second on a single CPU core
with the default configuration on our firewall3.

With the parameter nohz_full, we can prevent most of these interrupts on the
given CPU cores. Additionally, we set the rcu_nocbs parameter, but this is not
required because nohz_full sets it automatically [49].

Note that these parameters are not supported by many Linux distributions out of
the box4. We had to compile the Linux kernel ourselves because Ubuntu does not
set the required compile flag (CONFIG_NO_HZ_FULL=y).

6.6.3 Other configuration tweaks without effect

IOMMU We set the intel_iommu parameter to on and the iommu parameter to
pt (passthrough) to bypass the I/O Memory Management Unit (IOMMU). The
IOMMU degrades the performance and additionally, the DPDK documentation rec-
ommends turning the IOMMU off when using the uio_pci_generic kernel driver [51]
which VPP uses by default to run the NIC. However, this change has no effect in
our case because the IOMMU was already turned off.

Turbo Boost Stylianopoulos et al. [35] and the FD.io Wiki [48] also recommend
turning off Turbo Boost. The Turbo Boost technology increases the CPU frequency
above the base frequency if a CPU core is under high load and if the thermal budget
and the power budget allow it [52]. However, disabling the turbo boost had no
effect on our firewall because the CPU frequency was already constant at the base
frequency. We did not further investigate the reason for this.

We did also look at the other configuration changes described in the FD.io Wiki [48]
and in the documentation about the performance test environment of the VPP de-
velopers [53]. But none of them seem to bring any effect on our firewall.

running tasks away from the CPU cores that we isolated. Among these tasks are kernel threads
which we could not move to other CPU cores. In hindsight, maybe it would work in combination
with the rcu_nocbs parameter but we did not try it again.

3We roughly counted the number of interrupts using the command watch -n1 "cat /proc/
interrupts".

4Debian just recently (October 2021) set the required flag [50].
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7 Results and discussion
In this chapter, we evaluate whether our ideas yield the expected results. We first
introduced our ideas in Section 2.4, designed them in Chapter 5, and implemented
them in Chapter 6. We expect to see improvements in latency and jitter regardless
of the data rate, packet size, and rule count of the arriving packets. Moreover, we
analyze our testbed on its limitations and investigate the overhead caused by our
measurements to verify that our measurements are correct. Lastly, we discuss the
security tradeoffs introduced by our ideas.

7.1 Testbed setup
We already introduced our testbed in Section 5.5 and gave an overview of the testbed
architecture. In this section, we document the settings we used for the measurements
in this chapter.

7.1.1 Packet generation

We designed two types of load that we put on the firewall:

1. UDP packets that are all the same.

2. UDP packets with two different source ports. We first send nine packets of one
type (non-priority) followed by one packet of the other type (high-priority).
The packet generator permanently repeats this pattern.

When generating packets of load type 2), the data rate of high-priority packets
makes up 10% of the total data rate. This way, we consider the fact that real-time
industrial applications in general only exchange a small number of packets.

If we put a constant load on the firewall, the first packets do not reflect the
long-term behavior of the firewall (transient phase, see Section 5.5.3.3). Therefore
our packet generator waits five seconds after the packet generation starts before
recording timestamps. After the five seconds elapsed, the packet generator records
10 000 timestamps for data rates of 10Mbit/s and below, and 500 000 timestamps for
data rates higher than 10Mbit/s. Since we record a static number of timestamps, the
duration of the measurement depends on the packet rate. The internal performance
measurement records the same number of timestamps.

7.1.2 ACL and priority list rules

Table 7.1 shows the ACL rules we configure on the firewall. They belong to one
ACL assigned in ingress direction to the port receiving the packets from the packet
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Src IP Src port Dst IP Dst Port Protocol TCP flags Action
3.0.0.0.0/32 - - - UDP - Allow
3.0.0.0.1/32 - - - UDP - Allow
3.0.0.0.2/32 - - - UDP - Allow

... ... ... ... ... ... ...
- - 2.2.2.0/24 - UDP - Allow

Table 7.1: ACL rules that are configured on the firewall (the first rules are place-
holders of configurable number, the last one is the matching rule)

Src IP Src
port Dst IP Dst

Port Proto TCP
flags

Time
limit Port Queue

- 1236 - - UDP - 0.6 µs 3 1
- - - - - - 1 µs 3 0

Table 7.2: Priority list rules for the configurable time limit and priority measure-
ments (queue 1 is the high-priority queue). The catch-all rule is not
configured for priority measurements.

Src IP Src
port Dst IP Dst

Port Proto TCP
flags

Time
limit Port Queue

- - - - - - 0.0 µs - -

Table 7.3: Priority list rules for passive idea measurements

generator. The first rules are placeholder rules that do not match the generated
packets. Our ACL installer script generates these rules by incrementing the source
IP address. The last rule is the matching rule. In this chapter, we use the terms “rule
count” and “position of matching rule”. They are equal to the sum of placeholder
rules and the matching rule.

Table 7.2 shows the priority list rules we configure on the firewall for configurable
time limit measurements and for priority measurements. The first rule matches
the high-priority packets we generate. The second rule is a catch-all rule to limit
the ACL processing time of all packets. We do not configure the catch-all rule for
priority measurements because it is not supported with the priority idea enabled
(due to the limitations of the NIC, see Section 6.4.3). For the measurements of the
passive idea, we configure a single catch-all priority list rule with a time limit of zero
(see Table 7.3).

7.2 Measurement limitations
Packets arriving at a firewall are diverse. They have a different size, content, and
arrive in different intervals. We cannot cover all of these variations in our mea-
surements in this chapter. Instead, we cover only a small subset of the possible
patterns.

7.2.1 General limitations

In our measurements, we put a constant load on the firewall with a repeating pattern
of packets. We assume that a constant load at a high data rate simulates the worst-
case scenario of the firewall. However, we cannot simulate the sporadic arrival of
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Figure 7.1: Relative deviation of the interdeparture time at the packet generator
from the ideal interdeparture time (packet size: 64B)

other packets that do not fit the pattern. These packets could change the result of
the measurements, for example, if they match at a different position in the ACL.
Moreover, sporadic changes in the packet arrival rate affect the adaptive time limit.
In our measurements, the adaptive time limit is rather static than varying due to
the constant packet arrival rate. To further analyze and improve the adaptive time
limit control, we would have to vary the packet arrival rate during the measurement.

7.2.2 Reliability of the packet generator

Before evaluating our measurement results, we verify that our packet generator
generates packets according to its configuration. Besides the actual size and content
of the packets, the most important aspect is the interdeparture time of the packets.
The interdeparture time is the time interval between the transmission of two packets.
Since we generate packets at a constant data rate, the interdeparture time should
be constant. In Section 2.3, we explained how the interdeparture time is calculated
based on the packet size and data rate. We analyze the interdeparture time of our
packet generator in the following.

Figure 7.1 shows the relative deviation of the measured interdeparture time from
the calculated interdeparture time at different data rates. To show the outliers, we
not only included the mean and median in the plot but also show the 1st and 99th
percentile. We conducted the measurements with a packet size of 64 bytes. This
way, we generate the highest possible rate of packets at a data rate of 1000Mbit/s.
The results are similar when using the same packet rate at a different packet size.
We identify significant outliers in Figure 7.1 at all data rates. However, the median
stays close to the calculated (ideal) interdeparture time until 600Mbit/s. Then,
the median decreases because the packet generator compensates for the increasing
outliers. The compensation of the outliers works, as the average stays constant until

91



7 Results and discussion

Data rate (Mbit/s) Ideal (µs) Mean (µs) Median (µs)
1 672.000 672.004 672.000

100 6.720 6.720 6.752
200 3.360 3.360 3.360
500 1.344 1.343 1.536
600 1.120 1.119 0.864
700 0.960 0.961 0.736
800 0.840 0.878 0.704
850 0.791 0.880 0.704
900 0.747 0.878 0.704
950 0.707 0.879 0.704

1000 0.672 0.878 0.704

Table 7.4: Comparison of the calculated interdeparture time and the measured in-
terdeparture time of the packet generator at different data rates (packet
size: 64B)

800Mbit/s. At this point, the packet generator reaches its limits, also leading to an
increasing average. Table 7.4 illustrates this (as well as the 1st percentile in Fig-
ure 7.1). Starting at 800Mbit/s, the mean and median of the interdeparture stop de-
creasing. This means that the packet generator is not able to generate more packets
and the data rate does not increase anymore. Thus, we consider 800 Mbit/s with 64-
bytes-packets as the limit in our measurements. This corresponds to approximately
1.265Mpps. Consequently, the packet generator can still generate, for example,
packets of 100 bytes size at 1Gbit/s (1.265Mpps · (100B + 20B) ≈ 1.21Gbit/s).

7.3 Performance optimization
In Section 6.6, we explained how we tweaked the Linux configuration to improve the
performance. Figure 7.2a shows the latency during one measurement on an unop-
timized system. Each marker in the plot depicts the latency of one packet (due to
the large number of packets, the markers overlap and create lines). The measure-
ment shows many outliers up to 140µs. When we repeat the measurement on an
optimized system, we get the latencies shown in Figure 7.2b. In the optimized mea-
surement, the outliers are smaller and less frequent compared to the unoptimized
measurement. On the other hand, the average latency did not change considerably.
Table 7.5 shows the change in greater detail. There is almost no change in mini-
mum, median, and latency. In contrast, the 99th percentile, 99.9th percentile, and
maximum decreased by up to 60 µs.

The reason for the decrease of the outliers while the average latency stays constant
is the reduction of interrupts by the kernel. Kernel interrupts lead to a short-
term increase of packets in the ingress queue. When the firewall runs again, it
gradually empties the queue, and normal operation continues. Outliers are a cause of
jitter because the difference between the minimum and maximum latency increases.
Therefore, the configuration tweaks to the Linux kernel reduce the jitter while the
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Parameter Unoptimized (µs) Optimized (µs) Absolute change (µs)
Mean 27.411 25.894 -1.516
Median 25.408 25.008 -0.400
Minimum 13.216 13.136 -0.080
75th percentile 27.392 26.624 -0.768
90th percentile 33.296 30.976 -2.320
99th percentile 71.840 38.928 -32.912
99.9th percentile 90.176 58.608 -31.568
Maximum 138.080 77.520 -60.560

Table 7.5: Comparison of the latency between an unoptimized and an optimized
Linux system (data rate: 500 Mbit/s; packet size: 64B; position of match-
ing rule: 100)

average latency stays the same.

7.4 Performance impact of internal performance
measurements

We implemented the internal performance measurement to receive more information
about ACL processing. Many figures in this chapter rely on the internal performance
measurement. In Section 5.5.4, we listed the information that we measure internally.
Furthermore, we explained the implementation of the internal performance measure-
ment in Section 6.5. While we tried to keep the impact on latency and jitter as small
as possible, we cannot prevent a latency increase. In this section, we analyze the
latency increase caused by the internal performance measurement. Knowing the
latency increase helps us estimating the impact of the internal performance mea-
surement on the measurements in this chapter.

However, the impact on the latency is small. Therefore, it is challenging to sep-
arate the delay caused by internal measurements from other latency variations. In
order to measure the impact of the internal performance measurement using only
the external performance measurement, we repeated the measurements 100 times
(one measurement encompasses 500 000 timestamps, as explained in Section 7.1.1).
After that, we calculated the median latency of each measurement.

The box plots in Figure 7.3 show the distribution of these median latencies. We
get a median latency of 13.760 µs for disabled measurements, and 13.904 µs for en-
abled measurements. Hence, the approximate delay caused by internal performance
measurements is 0.144 µs. We did not notice a negative effect on the jitter of our
measurements.

We performed all measurements in this chapter with internal performance mea-
surements enabled (if not told otherwise). If the vector size is larger than one, the
internal performance measurement delay multiplies by the vector size. However,
measurements without ACL rules do not include the delay caused by the internal
performance measurement. The reason for this is that the internal performance mea-
surement is implemented in the ACL plugin. Without any ACL rules configured,
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(a) Latency on an unoptimized Linux system

(b) Latency on an optimized Linux system

Figure 7.2: Latency on an unoptimized and on an optimized Linux system (data
rate: 500Mbit/s; packet size: 64 B; position of matching rule: 100)
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Figure 7.3: Comparison of latency when internal performance measurements are dis-
abled or enabled (data rate: 100Mbit/s; packet size: 100B; position of
matching rule: 50)

the ACL plugin is inactive.

7.5 Timebound
In this section, we evaluate the timebound implementation (see Section 6.2 for time-
bound implementation). First, we measure the overhead of ACL timekeeping. ACL
timekeeping is necessary to limit the ACL processing time (see Section 6.1). After
that, we evaluate whether the timebound components, the configurable time limit,
and the adaptive time limit, reduce the latency and jitter.

7.5.1 Performance impact of ACL timekeeping

ACL timekeeping encompasses the tasks necessary to interrupt ACL processing when
the time limit exceeds. In general, ACL timekeeping consists of two tasks. First,
calculating the time point of time when the time limit exceeds. Second, check-
ing whether the time limit exceeded before each ACL rule matching. We already
explained the details about timekeeping in Section 6.1.

Due to the additional processing, ACL timekeeping increases the latency of the
packets. With an increasing number of ACL rules, the timekeeping overhead further
increases because each rule check involves additional timekeeping overhead. There-
fore, we measured the overhead for a different number of ACL rules. We performed
two measurements for each rule count. One measurement with timebound disabled,
and another measurement with a static time limit (hardcoded) that never exceeds.
To calculate the delay caused by ACL timekeeping, we subtracted the first measure-
ment’s mean latency from the second measurement’s mean latency. We calculated
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Figure 7.4: Additional delay caused by ACL timekeeping (data rate: 100Mbit/s;
packet size: 100B)

the delay twice: using the latencies from the internal performance measurement,
and using the latencies from the external performance measurement.

Figure 7.4 shows the delays we calculated. Given the delay fluctuations in the
external performance measurement, we conclude that the internal measurement is
more exact. There are fewer components in the internal measurement that can
introduce jitter. However, given that the timekeeping delay is only in the range of
a microsecond, the external measurement is pretty exact.

As written above, the timekeeping delay increases with the number of ACL rules.
On average, the delay increases by around 7 ns per ACL rule. The beginning of the
ACL checks introduces an additional delay because VPP must calculate the point of
time when the time limit exceeds. This calculation and other organizational tasks
introduce an additional delay in the range of 41.3 ns. Consequently, the overhead of
ACL timekeeping is larger if VPP must only check a few rules (0 to 5).

7.5.2 Configurable time limit

The configurable time limit limits the ACL processing time so that the ingress queue
does not fill up with packets. We first introduced it in Section 2.4.1, discussed its
design in Section 5.2.1, and explained its implementation in Section 6.2.1.

For the measurements in this section, we generated packets of two different flows
where 10% of the packets are high-priority packets (see Section 7.1.1 load type 2).
As defined in Section 7.1.2, we configured two priority list rules. One of these rules
is a catch-all rule limiting ACL checks of all packets to 1 µs. We used a constant
data rate of 400Mbit/s, a packet size of 64 bytes, and varied the number of rules.

Figure 7.5a shows the initial situation without configurable time limit. The laten-
cies are in a normal range until a rule count of 200. More rules lead to an increasing
latency and to increasing packet loss. Due to the ACL checks, the packet processing
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Parameter Median
Vector size 14
Number of processed rules (non-priority) 79
Number of processed rules (high-priority) 47

Table 7.6: Configurable time limit statistics (data rate: 400Mbit/s; packet size:
64B; position of matching rule: 500)

takes longer than the packet interarrival time.
Figure 7.5b shows the same measurement with configurable time limit enabled.

The catch-all rule in the priority list limits the ACL processing time, resulting in a
latency decrease. As soon as the catch-all rule limits the ACL processing time, the
latency and jitter stay the same regardless of the rule count. In our example, the
catch-all rule starts limiting the ACL processing time at around 100 rules. Below
100 rules, the firewall does not limit the ACL processing time. However, ACL
timekeeping (see Figure 7.4), priority list processing, and enqueuing the packets to
analyze later increase the overhead. The size of the overhead mainly depends on the
number of priority list rules.

With the configurable time limit, the median vector size settles at a value of 14
in our example (see Table 7.6). The vector size does not increase further when
increasing the number of rules. It only decreases below approximately 100 rules.
However, the vector size increases when increasing the data rate, as we show later.
Table 7.6 also shows the number of processed rules before the firewall interrupts ACL
processing. In contrast to the vector size, the number of processed rules stays the
same when increasing the data rate. We see that the firewall interrupts high-priority
packets earlier (47 rules median) than non-priority packets (79 rules median). This
behavior corresponds to the time limit configured using the priority list. Figure 7.6
shows that the firewall interrupts the ACL check after the configured time. The
measured ACL processing durations are slightly longer due to additional processing
before and after the ACL check. Additionally, the processing in software causes
outliers that we do not further investigate.

The disadvantage of the configurable time limit is the static time limit. It does
not adapt to the current packet rate. For example, a time limit of 1 µs works at a
data rate of 400Mbit/s. This changes at higher data rates. For example, Figure 7.7a
shows the situation at a data rate of 600Mbit/s. Starting at around 50 ACL rules,
latency and jitter increase too much, resulting in packet loss. The reason for this
is that the interarrival time of the packets decreases below the packet processing
time. At a constant data rate, the latency and packet loss settle. In our example,
the latency settles around 7ms, and the packet loss settles around 20%. More rules
do not further increase the latency because the configurable time limit limits the
processing time.

7.5.3 Adaptive time limit

The adaptive time limit overcomes high latency, jitter, and packet loss, caused by
high packet rates. It overrides the configurable time limit under high load to further
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(a) Without configurable time limit
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(b) With configurable time limit

Figure 7.5: Latency and packet loss for different matching positions without and
with configurable time limit. Note that the y-axes have a different scaling
to improve the readability of (b) (data rate: 400Mbit/s; packet size:
64B)
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Figure 7.6: ACL processing duration split into non-priority and high-priority packets
(internal performance measurement; data rate: 400Mbit/s; packet size:
64B; position of matching rule: 500)

decrease the ACL processing time. We first introduced the configurable time limit in
Section 2.4.1, discussed its design in Section 5.2.2, and explained the implementation
in Section 6.2.2.

In the last section, we discussed the limitations of the configurable time limit
at the example in Figure 7.7a. The figure shows that the configurable time limit
cannot prevent overload if the interarrival time of the packets is shorter than the
configured time limit. Figure 7.7b shows the same scenario but with adaptive time
limit enabled. We leave the configurable time limit enabled, but its effect is not
visible in the measurement. With the adaptive time limit enabled, the latency and
jitter are low again. Similar to the configurable time limit, the rule count does not
change the latency and jitter.

Latency and jitter stay low, even when further increasing the data rate. Fig-
ure 7.8a shows the latency behavior at different data rates1. Figure 7.8b shows the
effective time limit. The effective time limit is the minimum of the configurable time
limit (usually used at low load) and the adaptive time limit (usually used at high
load). In Section 5.2.2.2, we explained how the firewall calculates the adaptive time
limit. We defined a range between 0.2 µs and 2 µs for the adaptive time limit. In
this range, the firewall adapts the time limit in steps of 0.2 µs. We can identify these
steps in Figure 7.8b. With increasing data rate, the adaptive time limit decreases
down to 0.2 µs. On the other hand, we see the configurable time limit dominating
at a data rate of 300Mbit/s. In this case, the firewall interrupts most packets after
1 µs of ACL processing. After 0.6 µs, the firewall interrupts the fewer high-priority
packets.

1Some of the following figures contain violin plots. They depict the probability density at different
values (e.g., latencies). The wider the plot, the more samples were measured at a given value.
If the violin plots offer enough space, we included box plots inside of them.
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Figure 7.8c shows the vector size at different data rates. When increasing the
data rate, the vector size increases. The reason for this is that the adaptive time
limit cannot decrease below 0.2 µs. To compensate for the higher load, the firewall
processes packets in larger batches. However, we notice an increasing jitter of latency
and vector size at 700Mbit/s. Eventually, the adaptive time limit control causes
the jitter because the controller’s parameters are not fully tuned. Since the jitter is
still within an acceptable range, we did not investigate its cause further.

7.6 Analyze later
Analyze later continues ACL processing in the background. We first introduced
analyze later in Section 2.4.1, discussed its design in Section 5.2.3, and explained
the implementation in Section 6.2.3.

Analyze later runs on a different CPU core and locks the analyze later buffer
to access it (see Section 6.2.3.2). While the analyze later buffer is locked, the ACL
processing node cannot access it. To verify that the locking does not heavily increase
the latency and jitter, we measured the latency with and without analyze later.

Figure 7.9 shows the result at different data rates. At all data rates shown in
the figure, the 1 000 000 entries in the analyze later buffer are occupied after a few
seconds under constant load. Consequently, analyze later is always busy and accesses
the analyze later buffer at a high rate to fetch and delete packet information. By
increasing the data rate, the ACL processing node accesses the analyze later buffer
more frequently. This potentially leads to more frequent situations where the ACL
processing node has to wait for the analyze later node. However, we only measure
a small latency increase at higher data rates. In Figure 7.9, we can hardly see a
difference. The number of outliers only increases at high data rates. The median
latency increases between 1µs and 1.5µs.

7.7 Passive
With the passive idea, the firewall forwards all packets without a prior ACL check.
To detect wrong forwarding decisions at least afterward, the passive idea enqueues
all packets to analyze later. We first introduced the passive idea in Section 2.4.2,
discussed its design in Section 5.3, and explained the implementation in Section 6.3.

Figure 7.10a compares the latency of passive with the latency of the adaptive time
limit at different data rates. We omitted a comparison at a different number of ACL
rules because passive does not check any rules at all. In the last section, we concluded
that the latency of the adaptive time limit is almost constant at different data rates
except for some outliers. The passive idea behaves even better. Increasing the data
rate leads to a smaller increase of latency and jitter compared to the adaptive time
limit. In addition, the median latency is lower at all data rates in Figure 7.10a. The
comparison of the vector size in Figure 7.10b also reflects the lower latency. At all
data rates, the passive vector sizes are smaller than the adaptive time limit vector
sizes.
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(a) Only configurable time limit
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(b) Configurable time limit and adaptive time limit

Figure 7.7: Latency and packet loss for different matching positions with config-
urable time limit only, and configurable time limit and adaptive time
limit. Note that the y-axes have a different scaling to improve the read-
ability of (b) (data rate: 600Mbit/s; packet size: 64 B)

101



7 Results and discussion

300 400 500 600 700

20

40

60

80

Data rate (Mbit/s)

La
te

nc
y 

(μ
s)

(a) Latency

300 400 500 600 700

0.2

0.4

0.6

0.8

1

Data rate (Mbit/s)

Ef
fe

ct
iv

e 
tim

e 
lim

it 
(μ

s)

(b) Effective time limit

300 400 500 600 700
0

10

20

30

40

50

60

Data rate (Mbit/s)

Ve
ct

or
 s

iz
e

(c) Vector size

Figure 7.8: Effective time limit, vector size, and latency for adaptive time limit in
combination with configurable time limit at different data rates. (packet
size: 64B; position of matching rule: 500)
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Figure 7.9: Latency for different data rates with analyze later disabled and enabled
(packet size: 64B; position of matching rule: 500)

Eventually, we can reduce the latency and jitter of the adaptive time limit by im-
proving the time limit calculation (as we explained in the last section). In that case,
we would have to check again whether the passive idea performs better. However, we
think that the latency difference of the passive idea compared to the adaptive time
limit and configurable time limit is small. Both are equally suitable (or unsuitable)
for real-time applications. Hence, we recommend using the configurable time limit
or adaptive time limit for security reasons (or a combination of them).

7.8 Priority
With the priority idea, the firewall processes the high-priority and non-priority pack-
ets on different CPU cores (worker threads). Hence, non-priority packet processing
does not influence high-priority packet processing. We first introduced the priority
idea in Section 2.4.3, discussed its design in Section 5.4, and explained the imple-
mentation in Section 6.4.

7.8.1 Latency behavior

To verify that the firewall processes high-priority packets independently of the non-
priority packets, we look at the latency. Only 10% of the packets that our packet
generator generates are high-priority packets. Therefore, the load on the high-
priority CPU core should be lower than on the non-priority CPU core. A lower
load results in a lower latency.

Figure 7.11a shows the latency at different data rates. At all data rates, the violin
plots show two horizontal peaks. The upper peak is larger than the lower peak. We
claim that the lower peak (low latency) represents the high priority packets and that
the upper peak (higher latency) represents the non-priority packets.
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(b) Vector size

Figure 7.10: Comparison of adaptive time limit in combination with configurable
time limit and passive at different data rates (packet size: 64B; position
of matching rule: 500)
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To further verify that the firewall processes high-priority packets independently
of the non-priority packets, we look at the vector size. Figure 7.11b shows that the
vector size on the high-priority CPU core is always one. This proves that the load on
the high-priority CPU core is low. Furthermore, the vector size on the non-priority
CPU core is comparable to the vector size of the adaptive time limit in Figure 7.8c.
It is just slightly lower because only 90% of the packets arrive on the non-priority
CPU core. Thus, we claim that the non-priority CPU core processes all non-priority
packets.

7.8.2 Combination with timebound

The priority idea can be used in combination with the configurable time limit and/or
adaptive time limit (as we did in the above measurements). Combining both ideas
has the advantage that the firewall mitigates a high load on the high-priority CPU
core. However, if only a low rate of high-priority packets is expected, the priority
idea can be used on its own. Many real-time applications in industrial environments
only require a low data rate. Therefore, they do not require a combination of all
timebound and priority.

7.9 Security considerations
The timebound idea and the passive idea that we proposed in Section 2.4 worsen
the security because they can forward packets before ACL processing finished. In
contrast, the priority idea does not influence security. In this section, we discuss
noteworthy security tradeoffs, attacks, and one mitigation to guarantee that the
firewall checks at least a few rules.

7.9.1 Timebound and passive

Timebound and passive worsen the security because of the time-limited ACL pro-
cessing. To provide at least some security, we introduced analyze later. Analyze
later logs wrong forwarding decisions for further handling by administrators.

7.9.1.1 Early interruption of ACL processing

Timebound and passive interrupt ACL processing if the time limit exceeded. While
timebound checks at least some rules, passive does not check any rules at all. With
the configurable and adaptive time limit, it is possible to place the most impor-
tant rules at the beginning of the ACL, for example, to disallow access to certain
networks. However, the number of checked rules is dependent on the applied time
limit. If we configure a short time limit, the firewall checks fewer rules than with
a long time limit if the firewall is under high load. Furthermore, the firewall does
not guarantee how many rules it checks, even at a constant time limit. Due to soft-
ware processing, the number of checked rules varies on different hardware as well as
during the runtime.
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Figure 7.11: Latency and vector size of the priority idea at different data rates
(packet size: 64B; position of matching rule: 500)
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As an example, we look at the number of checked rules at the lowest possible
adaptive time limit, which is 0.2 µs. If the firewall interrupts the ACL check of all
packets, the median number of checked rules is 15. The whole range of checked rules
is larger. It ranges from 1 to 16 checked rules As a consequence, we cannot even be
sure that the firewall checks two rules. The firewall interrupts 0.6% of the packets
after the first rule. To ensure that the firewall checks at least a certain number of
rules, we can introduce a rule limit in addition to the time limit. The rule limit
interrupts ACL processing after a certain number of checked rules instead of time.
This improves the security but likely increases the jitter.

7.9.1.2 Analyze later buffer

In Section 5.2.3.2, we recommended to drop packets if the firewall cannot enqueue
packet information into the analyze later buffer because it is full. If the firewall does
not drop the packets if the buffer is full, it leaves room for attacks. For example, an
attacker can send a large number of packets that are all enqueued into the analyze
later buffer. If the analyze later is not sufficiently dimensioned for such a load,
the analyze later buffer gets full. As a consequence, VPP forwards packets without
enqueuing them into the analyze later buffer. The attacker can exploit this and
send forbidden packets without the administrators noticing because analyze later
does not check the packet. However, the administrators probably notice the attack
due to the high firewall load or due to the full analyze later buffer.

On the other hand, dropping packets if the analyze later buffer is full also enables
an attack. The attack starts the same way. An attacker sends packets that are all
enqueued into the analyze later buffer. If the analyze later buffer is full, the firewall
drops all packets that it cannot enqueue into the analyze later buffer. This way, the
attacker can interrupt the packet transmission.

7.9.2 Priority

The priority idea does not worsen the security. It does not limit the ACL processing
time but only processes packets on different CPU cores. However, if the priority
idea is used in conjunction with timebound or passive, the security issues are the
same as in Section 7.9.1.
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State of the art software firewalls are unsuitable for use in real-time industrial en-
vironments. Due to their high jitter, long time slots must be configured on TSN
network devices to ensure high-priority packets arrive within the time slot. However,
long time slots decrease the available time to process other packets.

To enable real-time packet processing on software firewalls, we proposed three
ideas: timebound, passive, and priority (see Section 2.4). We introduced and dis-
cussed the design of these ideas in Chapter 5. Our goal was to keep the design
as generic as possible, allowing the implementation in different software firewalls.
Nevertheless, parts of the design are specific to VPP, the software firewall we chose
to implement the ideas. In Chapter 6, we explained the implementation of the ideas
in VPP, based on our design.

During the whole design and implementation phase, we had efficiency in mind.
The ideas should degrade the firewall performance only as little as possible. In
Chapter 7, we evaluated whether our implementation works as expected and is
suitable for real-time packet processing in industrial environments. Additionally,
we analyzed how much our modifications increase latency and jitter due to the
processing overhead.

8.1 Summary
We chose VPP as a software firewall to implement the three ideas. In the following,
we briefly summarize the functioning of each idea.

Timebound Timebound consists of two mechanisms to limit the ACL processing
time: the configurable time limit and the adaptive time limit. Both interrupt ACL
processing if the time limit exceeded to forward the packet.

The configurable time limit enables the administrator to configure the time limit
by itself. In contrast, the adaptive time limit automatically determines a time limit
to check as many ACL rules as possible while staying below the packet interarrival
time. Both, the configurable time limit and the adaptive time limit, fulfill our
expectations regarding latency and jitter. The adaptive time limit is especially
useful in dynamic load scenarios where the interarrival time of the packets moves
below the configured time limit. In this case, the adaptive time limit still prevents
an overload situation.

Additionally, we introduced analyze later that checks packets in the background
if ACL processing was interrupted. This is an additional security measure to notify
the administrator if the firewall forwarded a packet although it should have dropped
it.
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Passive With the passive idea, the firewall does not perform ACL checks at all
before forwarding the packet. Instead, it just forwards the packets and performs
the checks using analyze later. We implemented the passive idea by setting the
configurable time limit to zero.

Priority The priority idea is different from the timebound and passive ideas. It
does not interrupt ACL processing. Instead, the firewall instructs the NIC to place
high-priority and non-priority packets in different queues. Then, the firewall pro-
cesses the packets on different CPU cores. Processing the packets on different CPU
cores prevents that non-priority packet processing slows down high-priority packet
processing. The priority idea can be used in combination with timebound or passive,
but it is not mandatory.

8.2 Suitability for real-time packet processing in
industrial environments

Our modified firewall reaches our goals we defined in Section 2.2. It prevents overload
scenarios caused by ACL processing. On the unmodified firewall, we measured a
latency of up to 8ms with a jitter of up to 1ms at a data rate of 400 Mbit/s, a
packet size of 64B, and 1000 ACL rules. Such a high latency also involves almost
80% packet loss. On the modified firewall, the latency settles below 40 µs with
a jitter below 60 µs in situations that are worse than the above (700Mbit/s, 1000
rules). When lowering the data rate, the jitter of the modified firewall decreases.
For example, at 1Mbit/s, the jitter is less than 3 µs at a latency of below 18µs.

The jitter of the modified firewall is much lower than the cycle time of cyclic
traffic, 2ms to 20ms (see Section 2.1). Thus, the firewall is suitable to process
cyclic traffic. However, the jitter of 60 µs at high data rates is still high. As a result,
the time slot on the network devices must be configured relatively long to ensure
that the high-priority packets arrive within the time slot. Long time slots block
other traffic for a long time and reduce the firewall throughput.

As already mentioned, the jitter is lower when lowering the data rate. Therefore,
if the load in the network does not cross a certain data rate, a lower jitter can be
assumed. Consequently, a shorter time slot can be chosen, increasing the firewall
throughput for other packets. The priority idea is ideal in this case. Typically,
high-priority packets make up only a small portion of the traffic. Since the firewall
processes high-priority packets on a different CPU core, the load on this core stays
low, as well as the jitter.

We did not measure any packet loss during our measurements of the modified
firewall. Therefore, the firewall is also suitable for acyclic traffic that does not
tolerate packet loss. However, we cannot guarantee that the firewall will never drop
any packet because software firewalls are not fully deterministic. The same applies
to the jitter. Despite we never measured any significant outliers of the jitter above,
they can still occur very rarely.

In summary, we think that firewalls implementing one of the proposed ideas are
suitable for real-time industrial environments regarding latency and jitter. At least,

109



8 Conclusion

as long as the requirements on the cycle time are not too demanding and very rare
outliers or packet loss are tolerable. Especially the priority idea is interesting because
it does not involve security tradeoffs compared to the timebound idea and the passive
idea. However, when using the priority idea without timebound or passive, the ACL
should not contain too many rules (depending on the data rate).

8.3 Future work
Our ideas turned out to yield the expected improvements in latency and jitter.
Therefore, we can improve and extend them to, for example, further improve latency
and jitter. We identified several points of our ideas and their implementation that
we can further improve and investigate.

8.3.1 Timebound and Passive

Many points for improvement apply to the timebound idea and the passive idea,
including analyze later. Most of the following points apply to timebound only but
some apply to both.

Allow configurable rule limit instead of time limit As a consequence of the
configurable or adaptive time limit, we cannot tell anymore how many rules the
firewall checks before interrupting ACL processing. Alternatively, we can introduce
a rule limit that interrupts ACL processing after a configurable number of rules.
This ensures that the firewall checks a minimum number of rules but worsens the
latency and jitter behavior.

Extend priority list by more fields In our implementation, the priority list only
matches 5-tuples. However, priorities are often configured using VLAN priorities in
industrial environments. Therefore, the firewall should support matching VLAN
priorities. The usage of VLAN priorities has another positive effect: the number of
priority list rules decreases (there are only eight priorities). Only a few rules are
needed to match high-priority packets because they can be identified by their VLAN
priority. As a result, the priority list matching is faster.

Improve adaptive time limit control In its current implementation, the adap-
tive control of the time limit is very basic. We only use a P controller in our
implementation (see Section 5.2.2.2). In future, we can further extend it to a PID
controller to improve the control in case of fluctuating packet rates. With an im-
proved controller, we can eventually further reduce the jitter when using the adaptive
time limit, as we suppose in Section 7.5.3.

Scale analyze later Some firewalls do not offer enough processing power to run
analyze later on the same device. To support such firewalls, we can offload analyze
later to another device. We already discussed this idea in Section 5.2.3.1.
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Alternatively, we can scale analyze later on the same device if the firewall has
enough CPU cores (this is probably not the case on low-budget firewalls). In the
current implementation, analyze later shares its resources with other organizational
tasks on the main thread (e.g., the CLI and API). As a first step, we can assign
analyze later to a dedicated CPU core. In another step, we can run analyze later
on multiple CPU cores. However, we think that scaling on multiple CPU cores is
a rare use case. It is only useful if the firewall processes a large number of packets
with a large number of ACL rules at the same time.

8.3.2 Priority

In the following, we discuss possible enhancements of the priority idea to make it
more flexible and efficient.

Split ACLs The firewall does not differentiate between ACL rules that match
high-priority packets and ACL rules that match non-priority packets. Consequently,
the high-priority CPU core also matches non-priority ACL rules, even if it never
processes non-priority packets. We can reduce the number of rules that need to
be matched by splitting an ACL into a high-priority ACL and a non-priority ACL.
Both ACLs only contain one type of rules: rules that match high-priority packets
or rules that match non-priority packets, respectively.

Extend hardware classification We only implemented a basic version of hard-
ware classification to place high-priority packets in different ingress queues. Thus,
the NIC can only partly match a 5-tuple (see Section 6.4.3). Most NICs supported
by DPDK can match at least VLAN tags. Thus, we can improve the suitability for
industrial environments by implementing VLAN priority classification on the NIC.

8.3.3 Other improvements

Future work is not limited to improving our ideas and their implementation. There
are other interesting areas that improve the latency and the overall functionality.

Further reduction of the latency We already achieve low latency and jitter at
low data rates. However, the latency is still quite high. For example, we measure
a median latency of around 16µs at a data rate of 1 Mbit/s. On the other hand,
Stylianopoulos et al. [35] achieved a latency of around 5µs using DPDK. We can
investigate investigate the reason for the latency difference.

Stateful matching In this thesis, we did not consider stateful connections. As
soon as the firewall stores a connection of a packet in the connection table, following
packets of the same connection bypass the ACL check. The firewall only matches
the first packet that belongs to a connection using the ACL. If the firewall interrupts
ACL processing of the first packet to forward it after the time limit exceeded, the
firewall also forwards all further packets without ACL check due to the connection
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8 Conclusion

table entry. This is a security issue and we should also consider stateful packets in
our design.
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Acronyms

ACL Access Control List
ASIC Application-Specific Integrated Circuit
DDoS Distributed Denial of Service
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
DPI Deep Packet Inspection
DUT Device Under Test
FPGA Field-Programmable Gate Array
FTP File Transfer Protocol
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IOMMU I/O Memory Management Unit
IPsec Internet Protocol Security
NAT Network Address Translation
NIC Network Interface Controller
OS Operating System
RSS Receive Side Scaling
SIMD Single Instruction, Multiple Data
tc traffic control
TSN Time-Sensitive Networking
URL Uniform Resource Locator
XDP eXpress Data Path
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