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Abstract

Digitalization in the context of Industry 4.0 poses new challenges for industrial
networks. Part of industrial digitalization is the connectivity between multiple
networks to improve inter-machine communication. One challenge that arises in
this context is the processing of real-time critical data across multiple networks.
Until now, the real-time capability was only available within single networks.
Simultaneously, companies increase their network security to protect industrial

networks from attackers. Firewalls are a fundamental part of network security.
These firewalls serve as access control between the different networks. Related work
shows that firewalls are not fully capable of real-time packet processing. We want
to analyze to what extent this is true and predict the firewall behavior to enable
industrial and real-time traffic on firewalls.
In our thesis, we create a model for software firewalls that predicts the latency,

jitter, and packet loss behavior. We implement and test our model for three different
software firewalls. From our prediction results, we evaluate whether our model can
predict the behavior of the firewalls and can support the selection of appropriate
firewalls for industrial networks at the planning stage.



1 Introduction

The digitalization of industry toward intelligent and flexible production creates new
challenges for networks. Additional services integrate into existing networks, or
the complexity increases due to the higher degree of automation. One example
of the increasing challenges in industrial networks are sensor-to-cloud systems. For
intelligent and flexible production, sensor data is essential. The sensor data provides
information, for example, on the production status, the condition of machines,
and the production quality. Intelligent and flexible production is only possible by
sending real-time critical data reliably across multiple zones. In industrial networks,
Ethernet is becoming more and more common to enable the networking of many
different industrial devices. The introduction of Ethernet in industrial networks
transfers the real-time critical traffic requirements of fieldbus to Ethernet. Since
standard Ethernet does not meet the requirements of real-time critical traffic, the
Time Sensitive Networking Task Group developed Time-Sensitive Networking (TSN).
TSN is a collection of Ethernet standards to reduce latency and variance in latency
(jitter) of time-critical network traffic. The reduction of latency and jitter enables
the time-deterministic forwarding of packets. An industrial network contains many
devices with different security requirements. We group the devices into multiple
zones, e.g., Virtual Local Area Networks (VLANs), according to their network
security requirements. At the edge of the zones, there are firewalls to guarantee
access control. With the help of policies, the firewall decides which packets can
enter the zone and which cannot.
We discuss the transmission of real-time data across zones using sensor-to-cloud

as an example. As soon as we want to send sensor data to the cloud and use it for
our production, we have to make sure that it is sent reliably in real time. In the
case of sensor-to-cloud systems, we need to send this data across multiple zones.
Until now, we can send real-time critical data only within one zone. The effects of
firewalls on network traffic performance are not fully known. Additionally, there is
no firewall that we can use in a TSN network [1]. Wüsteney et al. [2] discuss in their
work that firewalls are not fully capable of real-time packet processing. It requires
more information on how firewalls affect the performance of network traffic to enable
real-time traffic across firewalls.
Our goal is to model and simulate the behavior of software firewalls. With our

model, we can make statements about how a firewall behaves with specific network
configurations and compare it to new network requirements.
We partition this thesis into eight chapters. In Chapter 2, we describe the

motivation for this work in more detail. Furthermore, we define the goals of our
thesis. Next, in Chapter 3, we explain background information that is important
for understanding this thesis. Chapter 4, provides us with a review of related work
and shows which processes we can adopt. In the design chapter, Chapter 5, we

2



1 Introduction

present our latency and packet loss measurement setup, the system model for our
firewall behavior modeling, and which influencing factors we consider. Afterward,
in Chapter 6, we describe how we implement our modeling and the parameters
that influence it. Chapter 7 contains our measurement and modeling results for all
measured Device Under Test (DUT). In the final Chapter 8, we summarize our work
and give an outlook on future work.
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2 Motivation

In this chapter, we first describe challenges that originate from industrial network
digitalization. Based on this, we show what goal we are pursuing with our work.
Finally, we discuss the firewall type we use in this thesis.

2.1 Digitalization of Industrial Networks
The industry is becoming more and more reliant on digitalization. One goal of
digitalization in industrial networks is the connectivity of different networks with
each other and thus improving machine-to-machine communication [3]. Due to the
growing industry digitalization, it is necessary to adapt existing and new networks to
the increasing challenges. The digitalization of industrial networks requires reliable
real-time communication. Information about how network security devices affect the
latency, variation in latency (jitter), and packet loss of network traffic are necessary
to enable reliable real-time traffic across network boundaries. Industrial networks
and real-time traffic have specific requirements regarding latency, jitter, and packet
loss. In industrial networks, packet loss is prohibited because the systems usually
have to function around the clock without failure. Real-time traffic also allows no
packet loss and expects latencies of less than 20ms for cyclic traffic, see Section 3.9.1.
So far, it was only necessary to establish real-time capability within one network. In
zones and conduit networks, the real-time communication across different networks
creates new problems, see Section 3.9.2. In a zones and conduit network, devices
are grouped into zones, e.g., as a VLAN. These networks can only communicate
via conduits. At these conduits, there are, for example, firewalls for access control.
Until now, the research focused only on the bandwidth of firewalls.

2.2 Goals
Firewalls serve as a fundamental tool to increase the security of a network. We
use firewalls in various network security architectures, refer to Section 3.9. So far,
there is no method to predict the behavior of network security devices in terms of
latency, jitter, and packet loss. The goal of our work is the creation of a model
that represents the latency, jitter, and packet loss behavior of a software firewall
in industrial networks. Important for our model is the consideration of industry
networks. In industrial networks, packet loss is not permissible since the systems
have to function around the clock without failure. We investigate anomalies in
the behavior of software firewalls with regard to their latency and packet loss. We
explain these anomalies and, if necessary, make suggestions for optimization. For
new devices, we create our model automatically. Using our model, we discuss which

4



2 Motivation

firewalls are suitable for which type of real-time traffic. The users can use our model
to select the appropriate software firewall for their industrial network in advance.

2.3 Software Firewalls
Setting up an industrial network is cost-intensive. The industrial network of a
company consists of several subnetworks. The subnetworks are divided, both logically
and physically. Each subnetwork has specific security, packet loss, latency, and
jitter requirements. High investments in additional devices are necessary to ensure
the security of the subnetworks. Companies save money by using software firewalls
instead of hardware firewalls wherever possible. Software firewalls do not rely on
special hardware. Hence, we can use commodity hardware to build a software
firewall. In addition, a hardware-independent software firewall comes without firewall
rule restriction.
Hardware firewalls, on the other hand, with an Application-Specific Integrated

Circuit (ASIC) are limited by the capabilities of the ASIC. Thus, there are firewall
rule restrictions on hardware firewalls. A hardware firewall is specially built to
support the firewall software running on it [4]. Accordingly, a hardware firewall is
more expensive than a software firewall, and network designers use them when a less
expensive software firewall is not an option.
Therefore, we focus on software firewalls, as they are a prerequisite for low-cost

industrial networks, are frequently used, and have fewer hardware limitations.
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3 Background

In our thesis, we model the performance impact of firewalls on network traffic.
Therefore, it is essential to know some basics about firewalls. Second, we explain
Linux kernel space networking since iptables is based on it. Third, we show how user
space networking works under Linux. Fourth, we discuss the influence of temperature
on the performance of computers. Afterward, we explain the letter-value plot.
Next, we describe curve fitting and resulting problems. After that, we discuss the
simulation framework Objective Modular Network Testbed in C++ (OMNeT++).
Finally, we provide a summary of common network architectures.

3.1 Firewalls
Firewalls are a fundamental component of a secure network [5]. Firewalls are located
either at the edge of a network or directly on a host system. Both types of firewalls
have the same goal, a method to control network access. According to Noonan et
al. [5], firewalls, in their simplest form, are pure access control enforcement points.
A firewall separates a protected network area from an unprotected network area.
Firewalls only allow data to pass through that meets the restrictions. The firewall
discards other data packets. The firewall filters prevent unwanted and possible
malicious traffic from accessing the network or host system. The firewall filters not
only incoming traffic but also outgoing traffic. Firewalls operate in various ways to
guarantee network security. Below we describe different types of firewalls.

Packet Inspection Firewall

The packet inspection firewall uses a set of rules to make decisions about forwarding
or blocking traffic. The firewall decides to forward or reject a packet based on the
Internet Protocol (IP) address, port number, and protocol type [6]. The network
administrator can set the decision rules for this.
For filtering packets, there are stateful rules and stateless rules. A stateless filter

operates mainly on the data link layer, network layer, and transport layer of the
ISO/OSI model. For the filter decision, stateless rules use only information that
the packet contains. Stateless rules ignore information about which connection the
packet belongs to or which connection state the packet represents. Table 3.1 shows
an example entry for a stateless firewall rule. In our example, the packet is selected
based on the source IP and port and the protocol type. The firewall compares each
packet with this rule. The action specifies what happens to the matching packet.
Accept indicates that the firewall forwards the packet. Drop means that the firewall
rejects the packet.

6



3 Background

Src. IP Src. port Dst. IP Dst. port Protocol Flags Action
192.168.1.2 1234 anywhere - UDP - ACCEPT

Table 3.1: Forward chain stateless rule example (Src. and Dst. are acronyms for
Source and Destination); Internet Protocol (IP); User Datagram Protocol
(UDP)

In contrast, stateful rules use additional information about the connection for their
decision. The firewall stores connections in a connection table. With this type of
filtering, the firewall can detect whether the packet belongs to an active connection
and allow or reject the packet based on the session status. Table 3.2 shows an
example of an entry from a connection table. The entry contains information about
the packet, the connection state, and a timeout. The connection state indicates
the status of the connection. In our example, the state is ESTABLISHED. This
means that the connection is already existing. The timeout specifies the time
in seconds, after which the firewall deletes the entry. If the firewall processes a
packet of the corresponding connection within the timeout, the timeout is reset. For
existing Transmission Control Protocol (TCP) connections, the default timeout is
five days [7]. That is the reason for a timeout of 431,999 seconds in our table.

Src.
IP

Src.
port

Dst.
IP

Dst.
port

Connection
state Timeout

192.168.10.87 22 192.168.10.90 44800 ESTABLISHED 431999

Table 3.2: Iptables connection table example (Src and Dst are acronyms for Source
and Destination)

With these features, a packet filtering firewall provides an inexpensive type of
network filtering. A single device can filter traffic for an entire network [8]. Packet
filtering firewalls are not ideal for every network, so there are other types of firewalls.

Application-Level Gateway

The application-level gateway does not only filter packets by IP address or port
but also by the application the packets originate from [6]. The application-level
gateway is a server that sits between the application server and the client. The
gateway acts as a server to the client and as a client to the application server.
Since the application-level gateway serves as the communication partner for the
client and the server, an address translation must take place in the gateway. This
allows communication to take place between the client and the server. Each data
stream is examined to decide whether the data should be forwarded, dropped, or
marked for further examination [6]. It analyzes the data up to the application layer
of the ISO/OSI model. By checking the data content, we can increase network
security. Checking the data content makes it possible, for example, to allow access
to a particular website but restrict individual pages [8]. The additional data stream
analysis increases the processing time and thus affects the network’s performance.

7



3 Background

Next-Generation Firewall (NGFW)

NGFWs are a further development of the packet filter firewall. In addition to the
normal packet filter functions, they offer further possibilities for packet processing.
According to Güttich, NGFWs are firewalls that, in addition to the classic firewall
functions, provide data analysis at the application level [9]. These data analysis
functions include an Intrusion Prevention System (IPS). Furthermore, NGFWs
include antivirus and anti-spam functions. An antivirus vendor usually provides the
antivirus software, and the NGFW integrates them into the firewall [9]. NGFWs
provide the ability to enable protection against Denial of Service (DoS) attacks,
cross-site scripting, and Structured Query Language (SQL) injections. As Güttich
states, powerful NGFWs can analyze the Secure Sockets Layer (SSL) and Secure
Shell (SSH) connections [9]. They can further apply Uniform Resource Locator
(URL) filters and scan downloaded files during or before delivery to the client. The
benefit of an NGFW is the ability to track traffic from the data link layer up to the
application layer. The various additional functions enable a wide range of usage. The
additional functions increase the price of the NGFW compared to other firewalls.
In addition, the performance of the hardware should be higher to enable all the
functionality.

Circuit-Level Gateway

The circuit-level gateway enables session-level control of network traffic. Like the
application-level gateway, the circuit-level gateway is located between the internal
network and the outside world [10]. All connections from the internal network to
the outside world go through the circuit-level gateway. The gateway takes over
the address translation as with the application-level gateway. By monitoring TCP
handshakes and other network protocol session initiation messages, the gateway
decides whether the connection is trusted or not [8]. The circuit-level gateway does
not check the packets themselves. This makes the circuit level gateway easy to set
up and manage. This gateway type is often used in conjunction with other security
systems [8]. For example, in combination with application-level gateways.

3.2 Linux Kernel Space Networking
In Linux distributions, the networking subsystem is not an essential component of
the operating system kernel. Nevertheless, it is rather unusual to find a Linux system
without a networking subsystem [11]. The kernel module implements the protocols
up to the transport layer. The application layer protocols are often implemented in
user space [11]. In this section, we describe the kernel modules necessary for our
behavioral modeling of firewalls.

iptables

Part of the Linux kernel is the iptables module. Iptables is the most commonly used
firewall software in Linux [12]. It is used to setup and maintain IP packet filter rules

8



3 Background

in the Linux kernel [13]. To work with IP packet filter rules iptables uses the packet
filter hooks in the Linux kernel. „These kernel hooks are known as the netfilter
framework“ [12]. Iptables is, therefore, only a configuration interface for netfilter.
Thereby iptables control three different chains. These are the Input chain, Forward
chain, and Output chain, which iptables can configure. The Input chain controls
incoming traffic. The Forward chain controls traffic that the device has to forward.
This chain is essential for a firewall at the edge of a network. The Output chain
controls the traffic that the device sends into the network.
The network device compares each packet of incoming and outgoing network traffic

with one of the chains. If there is no matching rule for a packet, the default behavior
of the firewall takes effect. With the help of iptables, we can define the default
behavior. For example, a packet that does not match any rules of the chains can be
dropped or accepted.
In general, iptables has three possible reaction types for a rule. A connection

can be allowed by Accept. With Drop, the firewall drops packets without notifying
the sender. With Reject, the firewall notifies the system, which tries to establish a
connection that the firewall denies [13].

Netfilter

Netfilter provides the firewall functionality in Linux [12]. As a framework, netfilter
provides various hooks with which modules like iptables can register. The hooks
trigger at different points in the packet processing stack. Every incoming and
outgoing packet triggers these hooks. The hooks a packet triggers depend on whether
it is incoming or outgoing, what destination it has, and whether the packet was
previously dropped or rejected [12]. Netfilter offers the following hooks:

• NF_IP_PRE_ROUTING : Before any routing decisions are made

• NF_IP_LOCAL_IN : The incoming packets destination is the local system.

• NF_IP_FORWARD : The incoming packet is destined for forwarding.

• NF_IP_LOCAL_OUT : The packet is destined for the outgoing chain.

• NF_IP_POST_ROUTING : This hook is triggered just before the packet is
put out on the wire [12].

Modules that register with the hooks must specify a priority. The priority specifies
the order in which the netfilter calls the modules when the corresponding hook
triggers [12]. After netfilter calls the modules, they process the information and
return to netfilter with instructions on what to do with the packet [12].

conntrack

Since iptables only serve as a user interface, netfilter creates and manages the
actual stateful rules. The netfilter framework enables connection tracking through
the conntrack module. Conntrack examines network packets to determine which

9



3 Background

packets form a connection. In this process, conntrack only takes on an observer role.
Conntrack observes connection-oriented protocols and connection-less protocols. It
does not modify or drop the packets. From the observations, conntrack creates a
connection table that contains all current connections. Other kernel modules can
access these connection table entries and make decisions based on that [14].

3.3 Linux User Space Networking
Instead of using the Linux kernel for network communication, the possibility exists
to communicate directly with the Network Interface Card (NIC). For this purpose,
the networking is done through the user space. The user space networking aims
to achieve high I/O performance and high packet processing rates. User space
networking achieves higher I/O performance by communicating directly with the
hardware instead of using the Linux networking stack [15]. Our thesis uses the Data
Plane Development Kit (DPDK) framework for fast packet processing and the FD.io
Vector Packet Processing (VPP) network stack. We first describe DPDK and then
FD.io VPP to better understand their background and function.

Data Plane Development Kit (DPDK)

DPDK is a user-space packet I/O framework and provides the ability to develop
efficient network applications. It allows the direct exchange of Ethernet frames
with the user space without involving the Linux kernel [16]. In Figure 3.1, we
compare the classic network communication with the network communication of a
DPDK application. We observe that standard applications communicate with the
NIC via the kernel. DPDK applications communicate with the NIC via Poll-Mode-
Driver (PMD). The PMD enables the direct sending and receiving of data packets.
The PMD polls the NIC cyclically for new data packets [16]. The cyclic polling
prevents interrupts from the NIC when new data packets arrive. These interrupts
usually cause additional overhead.
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Normal 
Application

DPDK 
Application

Kernel

CPU NIC CPU NIC

PMD

Figure 3.1: Comparison between normal network applications and DPDK
applications. Based on [16]

FD.io VPP

FD.io VPP further referred to as VPP, is a high-performance network stack [17].
VPP offers switching and routing functionality. We treat VPP in this thesis as part
of our DUTs. VPP uses DPDK as driver for the NIC communication to process the
packets with high performance [18]. VPP can run on standard central processing
units (CPUs). The way of packet processing without strict performance requirements
is scalar packet processing [19]. With scalar packet processing, a „interrupt handling
function takes a single packet from a network interface and processes it through a
set of functions“ [19]. This way of processing is simple but inefficient. With the
overuse of the systems memory thrashing occurs. Each packet suffers a similar
number of instruction-cache1 misses [19]. VPP instead uses vector processing. A
vector processing network stack processes up to 256 packets simultaneously. In
this processing, an „interrupt handling function takes the vector of packets from a
Network Interface and processes the vector through a set of functions“ [19]. This
spreads the cost of instruction-cache loads over multiple packets and leads to faster
processing.

1„The instruction cache is used to keep recently executed instructions closer to the processor if
those particular instructions are executed again“ [20]
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3.4 Temperature Influence on Computer
Performance

Every computer hardware produces heat through its use. Too much heat can cause
a slowdown of the computer system [21]. „If the CPU temperature is too high,
for example, a mechanism will trigger that reduces performance in order to avoid
damaging the processor“ [21]. This safety mechanism causes the frequency to change
dynamically. As a result, there are performance losses. One reason for this is that
electrical conductors have a specific internal resistance. The conductors’ resistance
is temperature-dependent [22]. The increased resistance disturbs the electron flow.
The reduced flow of electrons leads to a decrease in the performance of the device.

3.5 Letter-Value Plot
Letter-value plots use recursively defined boxes to visualize the different dataset
partitions. In Figure 3.2, we present an example letter-value plot. The black line
next to zero represents the median. Each letter value has a specific depth that we
calculate recursively, starting with the median:

d1 =
(1 + n)

2
(3.1)

n is the number of data points. All successive letter values are defined by:

di =
(1 + bdi−1c)

2
(3.2)
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Figure 3.2: Example Letter-value plot
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„Because each depth is roughly half the previous depth, the letter values approxi-
mate the quantiles corresponding to tail areas of 2−i “ [23]. The stopping criterion
for calculating the boxes is when the 95 % confidence interval overlaps with the
subsequent letter value. Boxes are only shown for letter values whose 95 % confidence
interval excludes neighboring letter values [23]. All points outside the boxes are
displayed individually as outliers.

3.6 Runge’s Phenomenon
Runge’s phenomenon describes a property of polynomial interpolation. A higher
degree of the interpolation polynomial leads to worse interpolation quality. In
Figure 3.3, we demonstrate that an unfavorable choice of interpolation points and
a too high polynomial degree can lead to a worse interpolation result. The actual
distribution function is therefore not correctly reproduced. The interpolated function
starts to oscillate [24]. Polynomials of higher degree, therefore, usually have a
noticeable interpolation error over the entire interval. Schmid [24] mentions in
his book, to prevent the phenomenon, it is better to use piece-wise composite
polynomials of degree three.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
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Polyfit function
Actual function

Figure 3.3: Example plot for Runge’s phenomenon

3.7 Python SciPy Curve Fit
In our thesis, we model the behavior of the DUT by using a function. Python offers
with the SciPy library the possibility to fit a given function to data. The function
for this is called curve fit.
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Curve fitting is an optimization problem. The goal is to find parameters for
a defined function that fits the data best [25]. We define the function ourselves.
Depending on the data we measure, we can define different functions to model the
behavior. The curve fit function uses non-linear least squares to fit the function to
the data. The idea is to choose the parameters so that the distance between the
data and the curve is minimal.

3.8 Objective Modular Network Testbed in
C++(OMNeT++)

OMNeT++ is a simulation library and framework for creating network simulators [26].
OMNeT++ is modular and can be used for different applications. We can map the
following examples with OMNeT++ [27]:

• telecommunication networks modeling

• protocol modeling

• model multiprocessors and distributed hardware systems

• validate hardware architectures

• evaluate performance aspects of complex software systems

In the context of our thesis, it makes sense to use OMNeT++ for traffic modeling
of networks and evaluating performance aspects.

3.9 Network Security Architecture
In the following, we describe common network architectures that define secure
network design for industrial automation. We show with the architectures how
essential network security devices are. In addition, we show the role they play
concerning the performance of a network. First, we present the Industrial Control
System (ICS) network architecture. Second, we describe one of the most common
industry network patterns called zones and conduits. We then describe how to set
up a defense-in-depth network.

3.9.1 Industrial Control System (ICS) Network Architecture

An ICS consists of several control systems that operate together. Figure 3.4 shows a
simplified variant of an ICS network. The ICS network has a hierarchical structure.
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Factory Backbone
Production Network 1

Machine 1 Machine 2
Production Network  

Production Network 
Production Network 2

Machine 3 Machine 4

Figure 3.4: Example ICS network with firewalls for access control based on [28]

In Figure 3.4, the factory backbone network connects an arbitrary number of
separate production networks with each other. Each production network can be
further divided into individual machine networks. There is a firewall for access
control at each transition into a subnetwork. The companies often use software
firewalls to keep the networks as cheap as possible. The production networks
use TSN for real-time traffic. TSN contains different types of time-critical traffic.
Following IEC/IEEE 60802 [29] and the work of Wüsteney et al. [2], we distinguish
between three types of time-critical traffic:

• Isochronous traffic

• Cyclic traffic

• Acyclic traffic

Isochronous traffic consists of packets that repeat at fixed time intervals. The cycle
times are less than 2 ms [2]. Isochronous traffic is often used within the machine
network. With cyclic traffic, the cycle time is 2 ms to 20 ms [2]. Acyclic traffic
does not occur at fixed repeating intervals and therefore does not have a cycle time.
Alarm or event notifications count as acyclic traffic. Packet loss is not tolerated
to ensure that alarms and events reach their destination. Cyclic and acyclic traffic
occur across multiple networks.
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3.9.2 Zones and Conduits

A fundamental concept of network security in industrial networks is the concept
of zones and conduits [30]. Part of this pattern is connecting multiple devices or
systems with the same security level in zones. We define physical zones based on
their physical location. For logical zones, we group the systems according to their
functionality or characteristics. The network administrator can realize these zones,
for example, by using VLAN. The different zones communicate with each other
through conduits. According to Knapp et al. [30], security conduits are a particular
type of zone that groups communications. The conduits manage the information
flow between zones. Conduits contain security measures to control the data flow and
access. The zones and conduits pattern can limit communication so that the zones
become more secure. If a threat exploits a vulnerability within a zone, this pattern
can limit the negative consequences [30]. Knapp et al. [30] state that networks
are, in reality, divided into only a few zones. This means that the level of security
decreases. The more fine-grained the zones are, the higher the level of security.
For access control in conduits, we can use a firewall. Since a conduit is the only

communication interface of a zone to the outside world, the firewall’s performance
is essential. It can form a bottleneck in such a structure.

3.9.3 Defense-in-depth

With a series of defensive mechanisms, the defense-in-depth tries to protect a computer
network [31]. When a security mechanism is compromised, another is ready to stop
the attacker. Since there are countless possibilities of attacks, no single method
stops all attacks. Defense-in-depth allows reducing the risk of a successful attack.
In a network, for example, a firewall, an IPS, and additional antivirus programs

can act as a defense-in-depth architecture. If the attacker passes the firewall, the
IPS can detect and prevent the attack. If the attacker also gets past the IPS, the
antivirus program is still on the computers. This example is not absolute protection,
but the multiple barriers make a successful attack more difficult.
In defense-in-depth architectures, we can also use firewalls. Since the security

mechanisms are built one after the other, the performance of the firewall alone is
not decisive for the network performance [31]. However, even in this example, the
firewall is a security layer where it is essential to know how it affects the network
performance. Since the packets traverse each layer, they affect the performance.
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In this chapter, we explain the state-of-the-art research. First, we show and discuss
related work that examines the behavior of firewalls. Second, we demonstrate the
measurement environments of other research measuring latency, jitter, and packet
loss. Finally, we provide an overview of performance studies for other network
security devices.

4.1 Firewall behavior
Firewalls are a fundamental component of network security in industrial networks.
Industrial networks and real-time traffic have certain behavioral requirements for
the devices that operate in the network. In this section, we describe what related
work has studied the behavior of firewalls and demonstrate why it is important that
we examine the firewall behavior in terms of latency, jitter, and packet loss.
RFC3511 „Benchmarking Methodology for Firewall Performance“ defines general

benchmarking methods for firewalls [32]. The tests in the RFC3511 can help to
characterize the throughput performance of firewalls. Balarajah et al. [33] develop
benchmarking methods to determine the performance of firewalls and make RFC3511
obsolete. The authors show that especially NGFW have many security features that
affect the performance of the firewall differently. The benchmarking methods are
mainly aimed at determining the firewall’s performance in terms of throughput. The
jitter or packet loss behavior is not considered in detail.
Zvabva et al. [34] consider the performance issues of industrial firewalls. Due to the

network segmentation of the industrial networks, firewalls are used at every network
border and are therefore a fundamental part of the network communication of
industrial networks. In their evaluation, Zvabva et al. [34] address the latency, jitter,
and packet loss generated by open source Linux firewalls in Modbus TCP/IP. They
find that in Modbus TCP/IP, the maximum latency and jitter increase proportionally
to the number of general firewall rules. In their measurements, they observe no
packet loss. From their results, they conclude that if the IEC 62443 security standard
is strictly followed, some time-sensitive traffic is not possible. We note with the work
of Zvabva et al. [34] that there is already research in the industrial environment on
the behavior of firewalls but this work is only related to Modbus TCP/IP. The
findings from their work show that the firewall has a great influence on the network
performance and that some time-sensitive communication through firewalls is not
possible. In contrast to our work, they did not attempt to model the behavior of
firewalls.
Cheminod et al. [35] present an approach to obtain information about the effects

of industrial firewalls in networks. The paper of Cheminod et al. [35] also focuses on
the performance causes of industrial firewalls on Modbus TCP/IP. In contrast to
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Zvabva et al. [34], Cheminod et al. [35] investigate the performance effects on latency
and bandwidth. They do not give an estimate of the real-time traffic capability of
industrial firewalls.
In the paper „Performance Evaluation and Modeling of an Industrial Application-

Layer Firewall“ Cheminod et al. [36] investigate how the performance of a firewall
with Modbus TCP/IP traffic can be modeled. Cheminod et al. [36] focus on packet
latency as a significant performance index. They show in their work that latency
performance modeling of COTS devices for Modbus TCP/IP is possible and provides
benefits for system designers. For our modeling, we consider latency, jitter, and
packet loss, because latency alone is not sufficient to provide sufficient information
about the suitability of firewalls in industrial networks with real-time traffic.
A fundamental security pattern for industrial networks is the zones and conduits

pattern [2]. The network under consideration is divided into zones, i.e., VLANs and
subnets. These zones are connected via conduits. Conduits are specific gateways
equipped with security measures to control access, i.e., firewalls and switches with
Access Control Lists (ACLs). A key mechanism for improving network security
are packet filters. Based on the digitalization trend in industrial networks, delay
and jitter became an increasing problem in such networks, especially with time
sensitivity. TSN is used for realizing advanced real-time apps in industrial networks.
In "Impact of Packet Filtering on Time-Sensitive Networking Traffic" [2] published
byWüsteney et al. [2], the authors analyze problems that arise with the segmentation
of TSN Networks. ICS networks require segmentation provided by zones and conduits.
The network segmentation leads to a conflict between the security and performance
of the network. At the time of our work, there is no firewall that we can use in a TSN
network [1]. However, new control possibilities in the industry make this necessary.
Some applications already offer control from the cloud, where the packets have to
be sent across several subnets. Wüsteney et al. [2] measurements show that as the
number of processing steps increases, the jitter increases non-linear. The increasing
jitter leads to more complex forwarding models for the jitter. Furthermore, the
measurement results show that the faster CPU of a test firewall leads to more
predictable delays. Wüsteney et al. [2] conclude that packet filtering and forwarding
on general-purpose CPUs is not deterministic and difficult to predict [2]. The results
suggest that ACL based packet filters fit very well to TSN traffic because the delay
range and the delay behave constantly. The disadvantage of devices with ACL rules
is that they only support relatively few ACL rules. The work of Wüsteney et al. [2]
shows that the research is addressing the impact of firewalls on TSN traffic. In
contrast to our work, the authors did not model the latency, jitter, or packet loss
behavior. The authors show that the compatibility of firewalls with real-time TSN
is mainly influenced by the delay and jitter of the firewall. Wüsteney et al. [2] show
that it is important for the real-time capability of firewalls to obtain information on
latency, jitter, and packet loss.
The related work shows that the topic of firewall behavior prediction in industrial

networks is important. The estimation of whether a firewall can be used in an
industrial network with real-time traffic or not depends on its latency, jitter, and
packet loss. Previous related work focuses on throughput, latency, firewall behavior
in Modbus TCP/IP, and does not model the behavior to an extent necessary for the
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use in industrial networks. Our model provides the firewall behavior information to
quantify the industrial network and real-time capabilities of firewalls.

4.2 Measurement setups
In this section, we examine the measurement setup, measurement accuracy, and
modeling for latency, jitter, and packet loss in related work.
Programming languages such as P4, which enable the control of packet forwarding

planes, lead to new applications in the data plane. The new applications make it
difficult to define performance expectations. Scholz et al. [37] create a framework to
analyze and model the performance of P4 program components.
The modeling framework of Scholz et al. [37] records performance metrics through

the load generator and the DUT. The load generator measures throughput, packet
rate, and latency. The DUT, in turn, records CPU cycle usage, cache misses, and
resource consumption [37]. For the measurements, the authors specify network
traffic and parameters for the DUT. Initially, the authors measure the DUT at
the maximum packet rate, then at 10 %, 50 %, and 70 % of the maximum packet
rate. Scholz et al. [37] use MoonGen for the generation of the traffics. In our work,
we also use MoonGen as a packet generator to perform the measurements. With
MoonGen, we can write individual packet generator scripts to generate different
network scenarios. To create a model from the measured data, Scholz et al. [37]
use the curve fit function of the Python SciPy module. We also use the curve fit
function in our modeling because we can fit functions to the measured data and use
the functions for predictions.
Scholz et al. [37] state that their framework is limited by the target dependency.

Especially for software targets, the model derived for one platform may no longer be
valid for another platform. Scholz et al. [37] state that the accuracy of their model
is determined by the number of data points used for curve fitting. Accordingly, we
examine how the number of measurement points affects our model.
From Scholz et al. [37], we deduce that modeling with the help of curve fit is

common and that we can include such modeling in our work. In addition, the authors
mention that the same software delivers different results on different platforms. The
influence of different platforms is also a factor we have to consider in our modeling.
Harkous et al. [38] describe the influence of P4 constructs on packet processing

latency. From the influencing factors, the authors create a method to predict the
packet latency on P4-based network functions [38]. Since on P4 targets, each stage
of the P4 pipeline can have different features and building blocks, a complete
examination of all combinations is impossible [38]. Harkous et al. [38] start by
measuring the simplest P4 case and gradually increase the pipeline complexity.
With the measured results, the authors create a packet latency prediction method for
different P4 programs. The testbed setup on which the measurements are performed
consists of two servers that are connected. On one of the two servers MoonGen is
installed as a packet generator. The other server contains the Smart NIC with
the various P4 programs to be tested. A Smart NIC is a programmable network
card to speed up network processing. Harkous et al. [38] define in their work the
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generated packet size with 1000 Bytes and the data rate of 10 Gbps. MoonGen
is used for packet generation, measuring latencies, and reporting results. Exactly
four P4 programs are tested to establish the prediction method. Based on these
results, the authors explain that the average packet latency is composed of the time
for parsing and modifying headers and the number of tables in the P4 pipeline [38].
To validate their results, they used their method to predict packet latencies for two
realistic network functions. They measure the same network functions in reality and
compare the measurement results with their prediction. The deviation resulting
from this determines the accuracy of the prediction method.
The work of Harkous et al. [38] shows that other scientific groups are addressing

the issue of latency prediction. Also, Harkous et al. [38] use MoonGen to generate
their test traffic. However, only certain P4 functions are considered and not network
security devices as a whole. In contrast to the work of Harkous et al. [38], we consider
software firewalls as a whole and model their behavior.
The measurement accuracy is important to generate reliable measurement results.

Therefore, Wüsteney et al. [2] state that their synchronization accuracy between two
time stamp units is 30 ns based on the IEEE 802.1AS. Time stamps are necessary
to determine the latency of the DUT. The time stamps determine the time before
the DUT processes the packet and after. The measurement accuracy of Wüsteney
et al. [2] is sufficient because the delay and jitter in each measurement are tenfold
higher than the precision. Furthermore, TSN is based on the same IEEE 802.1AS
precision. For our time stamping, we use only one time stamping switch that sets
the packet time stamps in its ingress or egress. The time stamping switch sets the
time stamps in the packet payload. Our time stamping method is more precise, as
it eliminates the time synchronization error.
In conclusion, we observe that MoonGen is widely used to generate network traffic

in measurements. MoonGen offers many advantages for dynamic traffic generation
and analysis that we can use in our thesis. For our modeling, we use as well as other
related work Python SciPy curve fit.

4.3 General network security device behavior
measurements

In this section, we examine related work that generally investigates network security
devices on latency, jitter, and packet loss. From the approach of other investigations,
we derive important criteria and aspects for our research.
Pudelko et al. [39] published a "Performance Analysis of VPN Gateways". In their

research, they show the dependencies on CPU load, packet rate, and the number of
flows of different Virtual Private Network (VPN) Gateways. In their paper, they
test IPsec, OpenVPN, and WireGuard. They analyze which VPN implementation
is fast enough to be installed on a 40 GBit/s link with components-off-the-shelf
(COTS) hardware [39]. The authors use a separate server as a load generator on
which specially written MoonGen scripts run. For our work, we observe that other
network security device performance research uses MoonGen to generate network
traffic. Initially, Pudelko et al. [39] create a baseline measurement to determine if
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a bottleneck is caused by an application or the Linux network stack. The ideal
case would be if every packet is forwarded. In our thesis, we create a baseline
measurement as well to explore the general behavior of the firewall without firewall
rules.
The benchmark results of Pudelko et al. [39] show that none of the three open-

source software VPN implementations is fast enough for the 40 GBit/s test network.
Part of the overhead comes from the Linux network stack on which the three variants
are based. The authors’ DPDK-based VPN implementation shows that significant
performance gains can be achieved through kernel bypassing. They show that DPDK
changes the behavior of the VPN. In our work, we investigate DPDK-based firewalls.
We, therefore, expect a change of the DPDK firewall behavior compared to iptables
firewalls.
Hasan et al. [40] propose a latency-aware trust system placement. A trust system

is a specialized security device that includes firewalling and intrusion detection.
The Supervisory control and data acquisition (SCADA) communication network is
part of a smart grid. Trust systems are used especially in the SCADA networks to
protect the network against cyber-attacks. The placement scheme of Hasan et al. [40]
tries to place all trust systems in the SCADA network to keep the latency below
a certain threshold. For our work, Hasan et al. [40] findings showed that latency
determination and optimization are necessary not only in industrial networks but
also in smart grids. In contrast to our work, they only consider latency.
The related work shows that the investigation and modeling of latency are not

only necessary for firewalls but also for other network security devices to meet the
requirements in their respective networks. We also show that several research papers
on the performance of network devices use MoonGen. Due to the common use of
MoonGen, we also use it for our network traffic generation.
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In this chapter, we describe the system model of our latency and packet loss test
environment. We describe the essential factors for our system model. First, we
define the network environment for our measurement setup. Second, we determine
the essential network parameters for our latency and packet loss model. Third, we
present our measurement setup to profile the firewalls and test our model. Next, we
describe the two types of modeling that we consider. Afterward, we define how to
construct the model and how we profile the DUTs. Finally, we discuss our derived
simulation model.

5.1 System Model
Our system model for latency and packet loss modeling describes a general network
setup. Based on this, we formulate the test cases for the DUTs. Realistic network
traffic is part of this system model for latency and packet loss modeling. To simulate
a realistic network behavior, we first need information about what realistic network
traffic can look like. The Simple Internet Mix (IMIX) describes a general Internet
traffic pattern based on the average packet sizes that occur. Network device vendors
compare their devices using Simple IMIX. Accordingly, the Simple IMIX is a
reasonable basis for our packet generation.

Packet size
(incl. IP header)

Number
of packets

Distribution
in packets Bytes Distribution

in bytes
40 7 58.33% 280 7%
576 4 33.33% 2304 56%
1500 1 8.33% 1500 37%

Table 5.1: Simple IMIX packet size distribution

Table 5.1 represents the distribution of various packet sizes in a network, according
to Simple IMIX [41]. The distribution shows that there are many small packets, a
few medium-sized packets, and very few large packets in the network traffic. The
Simple IMIX gives us an indication of the size distribution we can expect. Based on
this, we can make our system model realistic.
To make the network traffic more realistic, we consider changing and constant

data rate of the packets. In other words, a network offers a maximum data rate, but
realistic network traffic does not use a constant data rate. We assume that the data
rate can change during a measurement run to include this behavior in our system
model.
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Since we are looking at software firewalls and want to model their latency and
packet loss, we also vary the firewall rule configurations. Both stateful and stateless
rule configurations are allowed on the firewall. For iptables configurations, note that
stateful rules include a connection timeout. This connection timeout is relevant for
the latency consideration as it produces additional overhead. The timeout depends
on the first received packet of that flow. For example, if we have already established
a TCP connection, the default timeout is five days. If the connection is currently in
the middle of the TCP 3-way handshake, iptables chooses 120 seconds as the timeout
limit [7]. Moreover, the limit can be modified arbitrarily by the administrator.
Another aspect of creating real network traffic is the choice of the packet transport

protocol. We allow TCP and UDP in our system model so that our resulting model
is not dependent on the chosen transport protocol.
In a network environment that is as realistic as possible, the firewalls face dynamic

reconfiguration. Accordingly, in our system model, we also consider CPU load that
does not arise from forwarding packets. We can create the additional CPU load
through SSH connections, access via the web interface, or the monitoring of the
devices.

5.2 Dependency Tree
We created a dependency tree to determine a possible latency dependency between
several DUT and network parameters. Network parameters are measurable values
that we examine for our modeling. We show the most important parameters for the
behavior influence of DUTs in Figure 5.1. We use the dependency tree to determine
the effects of specific parameters on the DUT latency. Various network scenarios
and external influences play a role in our dependency considerations.
Our goal is to develop a model that considers all necessary parameters. That

results in a comprehensive picture of the corresponding DUT. In Figure 5.1, we
present the parameters in tree form. The leaves of our dependency tree represent all
the influencing parameters we are investigating. All nodes above the leaves group the
parameters into appropriate groups. Each group represents a part of the prediction
function. The root in Figure 5.1 corresponds to our latency function for the DUT.
We show that internal and external parameters determine the device performance

on network traffic. Internal parameters are influenced by the DUT, such as the
number of firewall rules. External parameters determine the network traffic, such
as the data rate. We divide the dependency root into two parameter groups. On
the bottom, we have the temperature factor, and on the top, we have the device
factor. The temperature factor describes the ambient and device temperature. We
know from dealing with other electronic hardware that they need some cooling
to ensure functionality. This leads us to the assumption that the temperature
influences the latency. In our investigations, we measure whether temperature
changes influence the devices. We consider a possible positive influence due to
unfavorable temperatures and a negative impact due to high temperatures. Industrial
firewalls, such as the EAGLE40, are specified for a particular temperature operating
window by the manufacturer. The maximum permissible temperature indicates that
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the device is still functioning up to this point. The EAGLE40, precisely, is specified
with an operating window up to 105 degrees Celsius [42]. In our measurements
in Section 6.4, we investigated the effect of temperature on latency and packet
loss. Our measurements show that within the operating window, we can guarantee
the functionality of the device. We did not measure a relevant latency effect, so
we marked the temperature factor in Figure 5.1 red. If the temperature exceeds
the permissible limit, we cannot predict the behavior of the DUT since the CPU
frequency abruptly throttles. More about the influence of temperature on latency
in Section 6.4.
Other external influencing parameters, such as humidity, cannot be investigated

within the scope of this work. On the one hand, this is because the devices could
suffer damage by excessive humidity, which would falsify future measurements. On
the other hand, we cannot set the humidity in our measurement setup with sufficient
accuracy.
The Device Factor is a combination of multiple different factors. The Device

Factor indirectly determines the DUTs hardware performance. As the performance
of the device improves, it is more likely that the DUT produces lower latency. We
classify our device factor by several parameters:

• Base load

• Packets that need to be processed

• Configured firewall rules

• Device management

We specify the base load as a constant in each measurement. This is the minimum
time a packet needs to traverse through the DUT, shown as a red arrow in Figure 5.2.
For the determination of the base load is, no rules configured, no other packets in the
firewall, and no additional CPU load on the firewall. Since the base load is always
present, its latency is present in every measurement. Furthermore, we are interested
in the variable factors and in being able to predict them as precisely as possible. To
do this, we need to know all these factors.
The variable factors include the packet factor. We determine the packet factor

by the distribution of the packet size, the number of packets per second, and the
selected transport protocol. To be able to represent network traffic as realistic as
possible, we choose a packet distribution function that can represent the Simple
IMIX. In addition, we expect that the chosen distribution function should be able
to map other packet size ranges besides the Simple IMIX distribution. One of the
most influential factors is the number of packets per second parameter that combines
the data rate and packet size. We show later in Equation (6.1) how we calculate
the number of packets per second. Due to network traffic, this factor significantly
determines the load on the DUT.
The last part of our packet factor is the selected transport protocol. As mentioned

in Section 5.1, both TCP and UDP traffic is allowed. It is not necessary to distinguish
between transport protocols because the firewall considers the header of the packets
in its processing. A TCP header is slightly larger than a UDP header. Accordingly,
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Figure 5.1: Dependency tree for determining the latency composition
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the two protocols do not differ in latency. We examine this in more detail in
Section 6.1.4. As a result, we omit the transport protocol factor in our model
and mark it red in the dependency tree.
In addition to the factors mentioned so far, we consider the influence of firewall

rules on latency. Their impact depends on their number, type, and position. On
average, the more firewall rules we configure before our matching rule, the longer it
takes for a packet to match with the corresponding rule. The worst-case scenario for
this factor is a packet that has to be compared with each rule to find out that the
default rule applies. The position of the matching rule plays a decisive role. If the
matching rule is always the first rule in the filter table, it does not matter how many
firewall rules we configure afterward. The remaining rules are no longer taken into
account by the firewall. We consider in our further modeling the average matching
position of the firewall rules because different packets match at different firewall
rule positions. As an example, we assume 100 configured rules. The incoming
traffic matches exclusively to the first and last rule position. If the assumed traffic
distributes evenly, the average matching position is 50. In other words, each packet
is compared with an average of 50 rules until a match occurs.
The firewall rules factor also includes whether it is a stateful or stateless rule.

It depends on the selected firewall whether differentiation of the rule type causes a
latency change. The implementations and thus also the function of the rule types
differ depending on the software firewall type. We describe the differences in more
detail in Section 6.2.4.
To collect the data, we define in the next section what our measurement setup

looks like.

5.3 Measurement Setup
In this section, we explain the measurement setup for the latency and packet loss
measurement in different firewall configurations and network scenarios. We use this
measurement setup to profile the behavior of various software firewalls and verify
and create our model. We test different software firewalls, the analyzed firewalls are
referred to as DUT in the respective measurement. To validate our model, we create
random test scenarios consisting of different data rates and firewall configurations.
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Figure 5.2: Measurement Setup (arrows show the flow direction)

The test bed consists of several interconnected devices. Figure 5.2 shows the
setup schematically. The packet generator generates the test traffic and calculates
the latency and packet loss. Within a measurement, the packet generator sends
packets to the time stamping switch. We place the time stamping switch between
the packet generator and the DUT, as we show, in Figure 5.2. In our setup, the time
stamping switch inserts the time stamps in the payload of the generated packets.
The first time stamp is set at the egress of the time stamping switch, called tegress in
Figure 5.2. In more detail, we explain the time stamping in Section 5.3.2. Our time
stamping switch forwards the packets to the DUT. After processing the packets, our
DUT sends these packets back to the time stamping switch. The second time stamp
is set at the ingress of the time stamping switch, called tingress in Figure 5.2. The
time stamping switch sends the packet with both time stamps back to the packet
generator. The packet generator evaluates the packet.

5.3.1 Device Under Test (DUT)

In our test setup, we examine several firewalls. Table 5.2 shows the different
hardware and software combinations along with their names. We not only check
the behavior of different hardware with the same software firewall but also look
at the same hardware with two different software firewalls on it. The devices we
tested include an EAGLE40 industrial firewall from the Hirschmann Automation
and Control GmbH with a standard Ubuntu 20.04.3 LTS installed [43]. We examine
both standard iptables (DUT 1) and VPP (DUT 3) on this firewall. In addition,
we inspect an EAGLE30 (DUT 2) from the Hirschmann company. The unmodified
EAGLE40 usually uses another operating system than our Ubuntu 20.04.3 LTS. We
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use Ubuntu as the operating system on the EAGLE40 because we can test different
software firewalls on the same device.

DUT Number Hardware Software
DUT 1 EAGLE40 iptables
DUT 2 EAGLE30 iptables
DUT 3 EAGLE40 FD.io VPP

Table 5.2: Overview of the DUTs in their hardware and software combination

5.3.2 Time Stamping

We use an RSPE35 industrial Ethernet switch from Hirschmann to insert the time
stamps. Since the switch’s default configuration does not offer time stamping
functionality, Hirschmann provided us with a modified version that allows us to set
time stamps. As shown in Figure 5.2, we locate the time stamping switch between
the packet generator and the DUT. The RSPE35 inserts time stamps to the payload
of the packets. The RSPE35 sets the first time stamp on its egress, referred to as
tegress in Figure 5.2. After the packet returns from the DUT, the switch sets the
second time stamp at its ingress. In Figure 5.2, this happens at tingress. Setting
the time stamp does not affect the measured latency because the time stamping
switch sets the time stamps in hardware at its egress or ingress. Therefore, we do
not influence the DUT, and thus we do not falsify the latency measurement.
The difference between tegress and tingress determines the measured latency dlatency.

The latency dlatency is the time it takes for a packet to travel from the RSPE35 egress
tegress to the DUT and back to the RSPE35 ingress, tingress. Figure 5.2 shows that
we create tegress at the egress of the time stamping switch and tingress at the ingress
of the time stamping switch.
The time stamps are 4 bytes in size and have an accuracy of nanoseconds. This

allows us to represent a maximum of 232Bit = 4, 294, 967, 296 ns. To be able to
measure longer than 4 seconds, we use the time stamps only to represent the decimal
places of a second. Accordingly, each time stamp is between 0 µs and 999, 999.999 µs.
If the time stamp overflow occurs during a packet transmission between the time
stamping switch and DUT, the ingress time is less than the egress time that the
RSPE35 has assigned to the packet. In this case, we adjust the calculation of our
latency to avoid wrong results. Equation (5.1) shows how we proceed in these cases.

dlatency = tingress + 1, 000, 000 µs− tegress (5.1)

The latency dlatency contains the transmission time of the packet. We show the
transmission time in microseconds in Figure 5.2 as dtrans (orange arrows) between
the time stamping switch and the DUT. In Figure 5.2, we show with a red arrow
the actual latency dDUT of the DUT. We want to measure only the device latency
for our modeling. To determine the device latency, we need to calculate the packet
transmission time. We calculate the packet transmission time, dtrans as follows:
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dtrans =
(spacket + 20 Byte) · 8

rmax

(5.2)

The frame size spacket for each packet is given in bytes. In Figure 5.3, we show
the composition of the layer 1 frame. The preamble, the start frame delimiter, and
the layer 2 Ethernet frame together form the layer 1 frame. The interpacket gap is
placed between the layer 1 frames before they are sent. Therefore, we add 20 bytes
to the Ethernet frame size.

Preamble
7 Byte

Start frame 
delimiter
1 Byte

Layer 2 Ethernet frame
64-1522 Byte

Interpacket gap
12 Byte

Figure 5.3: Structure of a layer 1 frame

rmax describes the link speed and is specified in MBit/s.
We display the packet transmission time, dtrans, in Figure 5.2 between the time

stamping switch and the DUT. The packet transmission time occurs on the outbound
and inbound paths. Equation (5.3) shows that we subtract the packet transmission
latency dtrans twice from the measured latency dlatency to receive the actual latency
dDUT . The latency shown as a red arrow in Figure 5.2 is thus specified by dDUT .

dDUT = dlatency − 2 · dtrans (5.3)

5.3.3 Packet Generator

The packet generator is responsible for generating packets to imitate realistic network
behavior. We display the packet flow in Figure 5.2 as orange arrows. The generator
also handles the evaluation of the time stamps and thus acts as the start and
destination point of the packets. After reading the time stamps from the packets,
we discard the packets.
We use a personal computer with an Intel Core i9-9900K CPU and 32 GB RAM as

packet generator. The packet generator requires DPDK support for the NIC used.
Therefore an Intel I350-T4 with four interfaces is used as NIC. The additional NIC
supports 1 GBit/s on each interface.
Our packet generator runs Linux Mint 20.3 Cinnamon with the 5.4.0-109-generic

kernel. The specific kernel information is essential because it results in imple-
mentation differences in the kernel modules. For automatic packet generation and
evaluation, we use the open source packet generator MoonGen [44]. „MoonGen is
a fully scriptable high-speed packet generator build on DPDK and LuaJIT“ [44].
MoonGen supports the saturation up to 10GbE with 64-byte packets while also
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executing user-provided Lua scripts for each packet [44]. MoonGen allows us to
write own Lua scripts and perform our measurements automatically. This allows us
to change our network traffic at runtime dynamically. In addition, we can evaluate
the time stamps directly at runtime with MoonGen in comparison to other packet
generators.
To create realistic network traffic, we need to be able to send different packet sizes,

manipulate header fields, and change the data rate, all during packet generation.
For example, we want to change the destination port from one packet to the next
or change the size but keep the same destination. These packet manipulations take
place at runtime.
To ensure that we always run the measurements for the same amount of time,

we add a command line option to set the measurement duration in seconds. In our
measurement setup, the only traffic received by the DUT comes from our packet
generator. Hence, the ingress queue of the DUT is empty at the beginning of each
measurement, with consequences for latency and packet loss. The first few packets
will have lower latency and will not be affected by packet loss, but the following
packets will. We add a five-second warm-up phase to each measurement run to
exclude this anomaly from our measurement. After that warm-up phase, the actual
measurement takes place. During the warm-up phase, we start generating packets
but do not measure the latency or packet loss.
Our MoonGen script allows us to extract the times tamps from the packets during

the receiving process of our packet generator. The receiving process collects the
packets, extracts the time stamps, and calculates the measured latency according to
Equation (5.3). To increase the performance of our script, we write the calculated
latencies periodically as blocks to a csv file. With this methodology, we save ourselves
from storing all received packets. Only the latency and packet loss information are
stored for further modeling. Consequently, this approach saves us time and space
on the hard disk. Thanks to the sufficient available computing capacity and RAM,
our performance is not affected by this. Up to the maximum connection speed of
the NIC, this method has no loss of performance.

5.4 Design of Modeling Types
With the knowledge of the influencing parameters, we now have to find a suitable
modeling type. To create the most accurate modeling possible, we investigate
different types of modeling. We look at the advantages and disadvantages of the
different types. Based on these results, we choose the modeling type for our further
latency and packet loss model.

5.4.1 Modeling with Regression

One method of predicting the value of a variable based on values of other variables is
linear regression. The idea behind it is that linear regression tries to find a line that
fits the data best. Since our data does not distribute linearly, we test the Gaussian
processes regression (GPR). The idea behind GPR is having the regressor to find
the best function that fits our data. With regression, we can enter all measured
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parameters into the regression. This gives us a complete picture of the performance
of the DUT. Table 5.3 provides an overview of the advantages and disadvantages of
modeling with GPR.

Pro Contra
All measurable factors
can be taken into account A lot of test data needed

GPR finds the best function
for the given data Overfitting is likely

Calculation takes longer than curve fit modeling

Table 5.3: Pros and cons for modeling with GPR

To find the ideal function for the behavior of the DUT, the GPR needs a lot of
test data. Ideally, this should be data from tests with every possible configuration
of the device and the total network traffic that can occur. This is a considerable
effort and not realistic for general modeling in our work. With all the test data,
overfitting of the GPR is very likely. Furthermore, the resulting model is only valid
for the DUT used. The resulting function reproduces exactly its behavior. Since we
want to predict the behavior of software firewalls, we do not desire to overfit. Even
the slightest hardware differences make the model unusable. This is why we do not
consider modeling with the help of GPR.

5.4.2 Modeling with Curve Fit

Another way of modeling for us is to select the appropriate functions ourselves. We
find the functions by analyzing the latency and packet loss measurement data in
more detail. For adjusting the functions, we use the curve fit function of the Python
package SciPy. This allows us to fit a function based on our measurement results.
Table 5.4 lists the advantages and disadvantages of modeling using curve fit.

Pro Contra

Different functions can be fitted Variance between the function and
some test data can be large

Less test data needed
Quick model calculation

Table 5.4: Pros and cons for modeling with curve fit

In contrast to GPR, curve fit enables the usage of several functions for prediction.
For certain cluster formations in the measurement results, we can use different
functions for each cluster.
We use the fitted function to predict future performance. To get a meaningful

function, we need characteristic data of the DUT. In other words, we measure
specific settings of the DUT. We use the term setting to refer to various device
configurations and network scenarios. This kind of profiling provides us with the
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results necessary for modeling. For this type of modeling, we need fewer measurement
points than for the regression method. This not only saves us measurement time
but also time for calculating the model.
Based on the advantages that curve fit offers us, we use it for our modeling.

5.5 Model Description
In this section, we describe which factors are essential for our modeling. To do
this, we use the parameters of the dependency tree in Figure 5.1. We explain which
parameters describe the inner state of the device. Then, we formulate the network
traffic parameters. Finally, we describe how we measure these parameters.
Our model includes the internal state of the DUT and the current network traffic.

We divide the internal state of the DUT into known and unknown parameters.
We use the known parameters for our model to predict future behavior. Known
parameters, for example, are link speed and firewall rule configuration. Not all
parameters are obtainable on every DUT. Therefore, we cannot use all known
parameters in our model. These known parameters include the CPU utilization.
The CPU utilization describes the current state of a DUT quite well, but not

all DUTs allow us to know this inner state. Moreover, this parameter is hardware-
dependent. On a modern CPU, 70 % utilization might not be the same performance
as 70 % on an old CPU. For adjusting a behavior model to a DUT more precisely,
this parameter can be useful. However, in order to use this parameter correctly, the
CPU utilization needs a different unit. Since our model aims to predict more than
just one DUT, we do not use the CPU load for modeling.
The situation is similar for the ambient temperature and CPU temperature. We

do not know it directly, nor is it available on every DUT. Moreover, it does not
matter for our model, as we show in Section 6.4.
To obtain the most accurate prediction possible, it is essential to store the history

of internal parameters. The important internal parameters include the firewall rule
configuration, the link speed of the device, and the data rate at which packets arrive.
Saving this data is essential for our model, as the current state of the DUT has an
impact on future behavior.
In this section, we considered parameters that directly influence our traffic model.

Next, we consider other parameters that the DUT not directly influences in our
traffic model.

5.5.1 Traffic Model

The second important part of our model consists of information about the current
network traffic. Since we generate network traffic ourselves in our measurement
setup, we have to determine what the network traffic should look like. To do this,
we define some framework conditions that our network fulfills:

• The packet sizes are Poisson distributed to generate realistic traffic

• The data rate does not have to be constant
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• The average position at which the packets match the firewall rules does not
have to be constant, but known

Based on this framework and the dependency tree, we need a minimum number of
measurement parameters for modeling. Values we need for our modeling are:

• Packet size range

• Data rate

• Occurred packet loss

• Average firewall rule matching position

These points are the information we need to know about the network traffic in
order to define our model. Packet size and data rate are the determining parameters
for the network traffic behavior. By using information about packet loss, we can
improve the description and modeling of our DUT. Other parameters are not
necessary, such as the selected packet transport protocol. This is due to the different
sizes of the headers for TCP and UDP. The TCP header is slightly larger than a
UDP header. The firewall only checks the headers. The slight difference in size
between the two header types has almost no influence on the performance of the
DUT. Apart from the header size, the firewall processes the packets in the same
way.
Our network contains parameters that are not taken into account or not allowed.

For this purpose, we define not allowed network states. The resulting network state
parameters are not part of our traffic model. We do not permit the following aspects
in our traffic model:

• A packet size distribution other than the Poisson distribution

• Firewall features such as Deep Packet Inspection (DPI), SSL Inspection, Anti
Spyware, etc.

The Poisson distribution serves as a realistic packet size distribution. We can
map special networks, e.g., only small packets or rather large ones. In addition,
a Poisson distribution also maps the Simple IMIX. We discuss the reasons for this
in Section 6.1.5.
Additional features are not allowed in our traffic model because they are only

available on a subset of firewalls (NGFWs). Options such as DPI are part of an
Intrusion Detection System (IDS) and therefore not exclusively a firewall feature.
In our model, we only consider firewall features.
The parameters we generate with our traffic model allow us to specify the model

for the DUT. To measure the parameters as accurately and uniformly as possible,
we define our measurement model.
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5.5.2 Measurement Model

In our measurement model, we describe the different parts that we record during a
latency measurement. We also show which network changes we pay attention to.
A single measurement point contains the data rate, packet size, packet loss,

average firewall rule matching position, and the measurable internal state. The
duration of a single measurement run is two seconds. The two seconds of recording
start after a five-second warm-up period. We do this to make sure that the first
packets measured do not cause outliers, as they may end up in an empty firewall
queue. Several of these measurement points together make up one measurement run.
A measurement run without any DUT configuration provides the basic results for our
modeling function. Over a time interval t, we store several intermediate states, e.g.,
measurement points. We are storing these values results in our measurement history.
The history is necessary to track increases and decreases of individual parameters
during a measurement run. With the help of the model history, we can determine
the future behavior of the DUT.
In our measurement model, we allow changing the data rate and the position

of the matching firewall rule during runtime. Due to the Poisson distribution,
the sizes of the incoming packets are constantly changing. We do not change the
measurement duration because two seconds are a good balance between the number
of packets needed to calculate an accurate picture of the DUT behavior and the
overall measurement duration.
The parameter packet loss is essential in the sense that we not only use it for our

model but also indicate the quality of the traffic. Depending on the application,
different packet loss rates are tolerable. J. Mwela et al. [45] state that the quality
of video streams can tolerate a packet loss of up to 1 %. R. Pauliks et al. [46] state
that 0.25 % of IP packet loss is acceptable for video streaming. One of the reasons
why these protocols tolerate packet loss is because it happens. This shows us that it
is essential to consider packet loss in our model. It is not only part of the modeling
but is also used to investigate use cases. When selecting devices, we consider the
degree to which packet loss is tolerated by the application. Based on this, we can
select network devices.

5.6 Profiling Steps
For a precise prediction model, the quality and quantity of the input data are
essential. To achieve the best result with a minimum effort, we create an automatic
profiling script. The script contains several measurement configurations that our
model requires. In this section, we describe the necessary profiling steps.
All measurements consider Poisson distributed packet sizes. Our script varies the

maximum and minimum limits of the Poisson distribution to test multiple network
scenarios. By varying the packet sizes, we ensure that we also test the Simple IMIX
distributed packet range.
The first measurement we perform in our script is a baseline measurement. We

configure no rules on the DUT. This ensures that we can measure the base latency
of the DUT. With this setting, we also measure when the DUT enters an packet
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loss behavior. This measurement is essential for the foundations of our model. Our
basic measurement proceeds as follows:

• Data rate set to 1 MBit/s with Poisson distributed packet sizes

• Eight data rates between 1 MBit/s and the maximum data rate with Poisson
distributes packet sizes

• Maximum data rate with Poisson distributed packet sizes

After that, we reconfigure the firewall with 50 firewall rules. The last rule is the
matching rule for our traffic, so we compare 50 rules in any case until the matching
rule. With this configuration, we generate the same network traffic again. Thus,
we get a first impression of the influence of firewall rules on the performance of our
DUT. We perform the same measurement for 100, 400, and 1000 firewall rules. With
these measurement results, we get a good impression of the behavior with firewall
rule configuration. Why we use exactly this measurement point for our profiling is
explained in Section 6.2.1.
To find out more properties of the DUT, our script measures how the DUT behaves

under load changes. To do so, we configure the firewall in the same way as in our
baseline measurement. The difference now is the generation of our network traffic.
After one second of measurement recording, we increase the data rate by 100 MBit/s
during the measurement run. We simulate a random load change of the network
traffic. The resulting data helps us to adapt our model to real network traffic.
We also measure the effect of firewall rule position changes during the measurement

run. After one second of the measurement recording, we change the average firewall
rule matching position from 50 to 1.5. With this, we test the DUT for its behavior
under rule configuration changes.
To simulate particular network traffic, we can specify our packet sizes even more

precisely. If rather small packets appear in a network, we take this into account in
our profiling. Therefore we start the profiling with a different network traffic setup.
With our profiling, it is possible to do the same for large packets. We generate
the corresponding packet sizes in our packet generator by setting the minimum and
maximum values of the Poisson distribution. This option allows us to obtain an
even finer understanding of the DUT, which is useful for simulating our model.

5.7 Simulation Model
The last step in the design chapter is the simulation of our model. Simulating our
model offers various possibilities. Through simulation, we test our model without
hardware. With little effort, we gain a better understanding of the system through
simulation. This also supports possible system decisions. Since we also model the
influence of system changes, the simulation helps develop a strategy. With little
effort, we make it possible to capture the system complexity and map the temporal
progression. The simulation offers an alternative to real experiments with which we
can test arbitrary scaling.
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In addition to the opportunities, the simulation also has some risks. The simulation
requires a high initial design effort. The design defines what the simulation condition
should look like and its properties. It is essential to ensure that the construction
is accurate. Otherwise, it will falsify the simulation of our model. Another risk of
simulation is incorrect modeling. These include the following errors:

• Simplified assumption

• Unrealistic model

• Lack of transparency

• Logical error

• Lack of data

• Garbage-in-garbage-out system

For us, it is essential to prevent these errors during modeling. Otherwise, we risk a
defective model without additional benefit. Apart from that, a simple programming
error can cause an incorrect simulation. Numeric errors or the randomness of the
result are also risks of a simulation. The apparent objectivity of the model makes
the user believe the model would work. But it is only applicable to this simulation.
To prevent this error, it is essential not to treat the simulation as ground truth. In
our simulation, we consider the risks mentioned above to avoid them.
In our simulation, it is essential to test the model for its reliability and accuracy.

For this purpose, we design the simulation in such a way that various network
scenarios are testable. The results provide information about the behavior of the
DUT. With this information, we are able to make decisions about the usability of
devices in specific network scenarios.
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In this chapter, we discuss the implementation of our model and introduce the core
properties.
The performance of the firewall depends on several parameters. In Chapter 5,

we describe the framework conditions for our network and the parameters whose
influence on firewall performance we are investigating. The parameters we investigate,
from Section 5.2, are the transport protocol, data rate, packet size, the distribution
of packet sizes, cross traffic, base load, number of firewall rules, the position of the
matching firewall rule, the firewall rule type, and the temperature. If we combine all
these parameters into one prediction function, we create an unnecessarily complex
prediction model. Therefore, we look at the behavior of the parameters and try
to find correlations among them. Based on this information, we can combine the
parameters.
The data rate, packet size, and distribution of packet sizes investigations are part

of Section 6.1. Which transport protocol we use in our network traffic is part of our
discussion in Section 6.1.4. In Section 6.1.7, we describe the cross traffic parameter
in more detail. We examine the influence of the firewall rules, their position, and
type in Section 6.2. The base load is part of our CPU measurement in Section 6.3. In
Section 6.4, we take a closer look at the influence of temperature on the performance
of firewalls. Finally, we create our model and describe the various functions.

6.1 Traffic
In this section, we examine the influence of the network traffic parameters from
Section 5.2. First, we consider the data rate, the packet size, and their effect on the
network performance. Second, we discuss the parameter packets per second (pps).
Third, we compare the behavior of TCP and UDP on the performance of firewalls.
Next, we discuss the distribution of the packet sizes for realistic network traffic
generation. Afterward, we consider the variation of the data rate. Finally, we define
what impact cross traffic has on the firewalls. We perform the measurements on the
EAGLE40 with iptables (DUT 1), see Table 5.2, for a definition of the devices.

6.1.1 Date Rate

An important parameter describing the network traffic is the data rate. By keeping
all other parameters constant and varying only the data rate, we determine its
influence on the latency of the DUT.
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Figure 6.1: Measured mean latency in microseconds and packet loss for different data
rates with constant packet size of 160 Bytes; Recording for 2 seconds at
each measurement point; Depending on the firewall configuration the
position of the threshold changes; We define left side of threshold as
non-overload area and right side as overload area

Figure 6.1 shows an example of how the data rate influences the latency and packet
loss. We measure the latency behavior for a constant packet size of 160 Bytes. The
DUT 1 does not contain firewall rule configurations in this measurement. Each
measurement point is the mean latency from 2 seconds of recording. Two seconds of
recording are enough because, before that, we already generate five seconds of traffic
without recording it. In the five seconds before, we eliminate possible anomalies at
the beginning of the transmission. The error bars indicate the standard deviation of
the latency measurement. Figure 6.1 demonstrates how the change of the data rate
leads to a change in latency and packet loss. At data rates below 500 MBit/s, the
measured latency is below 100 µs, and the packet loss is 0 %. Above 500 MBit/s,
the latency increases to over 400 µs, and the packet loss rises to 21 %. The variation
in latency (jitter) is larger in the range below 500 MBit/s than in the range above
since the firewall has reached its overload area. We define the term overload area
as the area where the firewall starts to suffer packet loss and the latency increases.
A firewall in an industrial network must not operate in the overload area, as they
do not tolerate packet loss. In Figure 6.1, we show the threshold through the green
dotted line. The threshold changes depending on the firewall rule configuration and
is not always at the same position. On the right side of the threshold is the overload
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area where packet loss occurs. We define the term non-overload area as the left side
of the threshold. In the non-overload area, there is no packet loss, and we observe
lower latencies in this range. Since the firewall can no longer process all packets and
generates a high latency for the packets, the variation in latency decreases.
With Figure 6.1, we show that the latency of the DUT increases with the data

rate. The higher the data rate, the higher the mean latency. Accordingly, the data
rate has a direct influence on latency behavior. As soon as the firewall reaches its
overload area, the packet loss starts to increase. The packet loss then also increases
with the data rate.

6.1.2 Packet Size

The second important network traffic parameter whose influence on latency we
investigate is the packet size. How we generate this is defined in Section 6.1.5.
To determine the influence of the packet size on the latency behavior of the DUT,
we change the packet size from measurement to measurement and not within a single
measurement recording.

0 200 400 600 800 1,000 1,200 1,400
Packet size (Byte)

0

50

100

150

200

250

La
te

nc
y 

in
 m

icr
os

ec
on

ds
 (

s)

Mean latency
Packet loss

0

5

10

15

20

Pa
ck

et
 lo

ss
 in

 p
er

ce
nt

 (%
)

Figure 6.2: Measured mean latency in microseconds for different packet sizes
with constant 200 MBit/s data rate; Record for 2 seconds at each
measurement point

In Figure 6.2, we show how the latency of the DUT 1 behaves when changing the
packet size. At a constant 200 MBit/s, the latency increases with increasing packet
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size. At 64 Bytes, the mean latency is less than 50 µs, rising to over 150 µs at 1522
Bytes. The packet loss remains constant at 0 % over the entire packet size range.
The increasing latency is due to the physical size of the packet. Within the

DUT the forwarding of the larger packet takes longer than that of a smaller one.
Accordingly, the packet size affects the latency of the DUT. The packet loss remains
constant at zero, since 200 MBit/s does not lead to an overload of the firewall in
any packet size combination.
From Figure 6.1 and Figure 6.2, we conclude that both parameters influences the

latency and packet loss of an DUT. In Section 6.1.3, we show how the combination
of the two parameters affects the latency behavior and what conclusions we can
make from this.

6.1.3 Packets per Second

Figure 5.1, shows that many parameters influence the latency of a firewall. The
increasing number of parameters leads to the increased complexity of our model.
This is because our model has to consider many parameters. If we look at how
the data rate and packet size affect the latency of the DUT, we observe that both
influence the latency.
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Figure 6.3: 3D model of DUT 1 base measurement
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In Figure 6.3, we create a three-dimensional surface to show the latency influence
of packet size and data rate. We generate the data for the 3D model through a
base measurement. In a base measurement, we only vary the packet size and the
data rate. For the base measurement, we do not configure any firewall rules or other
options on the DUT.
The majority of the area in Figure 6.3 (shown in blue) represents a latency below

150 µs. Small packet sizes of 160 bytes at 1 MBit/s have a mean latency of less than
50 µs. The latency increases continuously to over 100 µs for packets with a size of
928 Bytes at 1000 MBit/s. We show that larger packet sizes results in higher latency.
However, from 800 MBit/s to 1000 MBit/s, we observe that the small packet sizes
have a higher latency than large packets at the same data rate. This area is the
overload area. In Figure 6.3, we display the overload area as a dark red and green
surface. The overload area displays that the firewall needs too long to process the
packets. As we show in Figure 6.1, the overload area is related to the packet loss.
In the base measurement, in Figure 6.3, are too many small packets that the firewall
has to forward. As a result, the firewall generates packet loss and has increased
latency. In this case, a latency of over 450 µs.
With a data rate of 1000 MBit/s, we observe that the latency temporarily decreases

from 160 byte to 288 byte. Since the firewall is no longer in its overload area the
latency decreases. Starting from 288 Bytes the latency increases again with the
packet size. At the same data rate, we send fewer large packets than small ones.
The firewall is then again able to process the packets without packet loss. The larger
packet sizes prevent the firewall from entering its overload area.
To prevent our model from becoming unnecessarily complex due to too many

influencing parameters, we combine the data rate and the packet size into one
parameter. The resulting pps parameter allows easier comparison of the DUT. We
show how to calculate the parameter pps in Equation (6.1). To calculate the pps,
we divide the data rate r in MBit/s by 8 to obtain the data rate in MByte/s. We
divide the data rate in MByte/s by the packet size s in Bytes. To the given packet
size we add 20 Bytes for the preamble, start frame delimiter, and interpacket gap.
We show the layout of the layer 1 Ethernet frame in Figure 5.3.

pps =
r
8

s+ 20 Bytes
(6.1)
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Figure 6.4: DUT 1 base latency measurement in µs with no firewall rules configured

With this combination of data rate and packet size, we simplify our model. In
Figure 6.4, we display and compare different latency measurement results in pps.
Using the pps parameter, we can display latency measurements and packet loss
measurements across multiple data rates and packet size combinations in 2D images.
Each point in Figure 6.4 represents the latency in microseconds for a pps value. Most
points up to 500, 000 pps have a latency of less than 100 µs. The overload area starts
at about 550, 000 pps and the latency increases to over 400 µs. The 2D representation
with pps not only simplifies the presentation of measurement results. With the pps
parameter, the prediction functions are only dependent on one parameter instead of
two.
However, the presentation does not only have advantages. Due to the combination

of packet size and data rate in pps, it is no longer obvious from which network
setting the measurement results to originate. We observe that in the range below
500, 000 pps, the points have a spread of about 50 µs. One function will not be
sufficient to map all latencies.

6.1.4 Used Protocol

In our system model (Section 5.1), we define that we support both TCP and UDP
as transport protocols in our model. In this section, we examine the differences
between the two protocols for our model and their influence on the measurement
results. A TCP header is slightly larger than a UDP header. We examine how
crucial this size difference is since a firewall looks at the header of a packet when
checking them. For the generation of the TCP traffic, we use the Ostinato packet
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generator instead of MoonGen, because it offers the possibility to generate stateless
TCP traffic. Unfortunately, a correct TCP connection is not possible with either of
the two generators.
In Figure 6.5 we compare the latencies of UDP and TCP traffic. We represent the

standard deviations in the TCP an UDP latency measurement by error bars. For our
comparison, we measured three pps values with TCP packets that represent both the
overload area and the non-overload area. Our TCP measurement at 200, 000 pps has
an average latency of 48.7 µs and a standard deviation of 11.4 µs. In comparison, the
UDP measurement with the same number of pps has an average latency of 58.9 µs
and a standard deviation of 8.1 µs. The three TCP measuring points show a similar
pattern as the UDP measuring points. Therefore, we decided to measure only these
three pps values with TCP packets.
We can see that the latencies of the TCP traffic behave similarly to those of

the UDP traffic. The reason for the similar latency is the processing of the DUT.
In our packet generation, both TCP and UDP packets are the same size. At the
same packet size, the size of the payload is different for TCP and UDP. A packet
inspection firewall processes TCP and UDP packets in the same way. The additional
TCP header fields are not relevant for the firewall. Since the TCP packets have only
a slightly larger header than the UDP packets, the latency difference is small.
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Figure 6.5: Comparison of the latency measurement between UDP and TCP traffic

Due to the small latency difference, the transport protocol we use for our network
traffic generation does not matter. Therefore, we use UDP packets for the network
traffic generation in our measurements.
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6.1.5 Packet Size Distribution Function

In order to obtain good latency and packet loss measurement data for the creation
of this prediction model, we need realistic network traffic. To make our network
traffic realistic, we need a distribution function that defines our packet sizes. To
find a suitable distribution function for the packet sizes, we use the Simple IMIX as
a basic distribution. Our distribution function for realistic packet sizes must at least
be able to reproduce the Simple IMIX distribution. If possible, we find a distribution
function that helps us to map an even larger pps range.
The generation of packet sizes must be pseudo-random, as we need to know the

size of the packets sent at any given time. Otherwise, there is no guarantee that the
packets arrive at the specified data rate.
As an approach to generating realistic packet sizes, we first generate static packet

sizes. MoonGen allows the generation of multiple packets during runtime. This
allows us to generate packets with static size according to the specifications of the
Simple IMIX and send them according to the Simple IMIX sequence. The biggest
disadvantage of this is the lack of dynamics in generation, as Simple IMIX only
defines three different packet sizes. If we test with this distribution up to a maximum
data rate of, e.g., 1GBit/s, we only achieve ≈ 346, 904 pps. With only 64 Bytes
packets, however, up to ≈ 1, 488, 095 pps would be possible.
To make the network traffic more realistic, we need a distribution function that

generates the packet sizes pseudo-randomly at runtime. For an efficient and simple
generation of such sizes, the Poisson distribution is a good choice. This is shown
in Figure 6.6. The figure shows the similarities between Poisson distributed packet
sizes and Simple IMIX distributed ones. Each point in the plot represents the
average latency of a measurement. We define one measurement by a data rate and
the maximum and minimum packet size for the Poisson distribution. Figure 6.6
also shows the range of our Poisson distributed network traffic. From 1 pps to
694, 000 pps, almost all combinations are possible.
The latency of the Simple IMIX distribution changes only marginally. This is

because Simple IMIX has fixed packet sizes and a fixed packet generation order.
Therefore, the latency does not change dramatically.
We can generate the Simple IMIX distribution by using the static packet size

definition in MoonGen. For the Poisson distributed packet sizes we change the
packet size at runtime. For this purpose MoonGen offers the possibility to generate
Poisson distributed values. We can assign these values as sizes during the creation of
the packets. After we assigned the random size to the packet, MoonGen transmits
it.
The Poisson distribution does not only represent the Simple IMIX distribution but

also can generate larger pps combinations. Thus, the Poisson distribution fulfills our
requirements and we can use it for the creation of our model.
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Figure 6.6: Comparison of a measurement with Simple IMIX distributed packet sizes
and a measurement with Poisson distributed packet sizes

6.1.6 Variation

In the environment of a network, load changes occur in random events. In a
corporate network, such a load change may occur by triggering a security camera.
If the security camera detects a person, the camera uploads its video recording to
a server. This increases the data rate on the network. Another example of data
rate alternation in a network is the transfer of machine data. In a production
environment, machines transfer data about a work-piece between each other. The
data contains, for example, information for future processing steps. Sending the
work-piece data from one machine to another increases the data rate in the network
for a short time. In this section, we investigate the effects of data rate changes
during runtime.
During a measurement run, we change the data rate by 100 MBit/s and observe

the effects. A change of 100 MBit/s corresponds to a rapid increase in the data rate.
Such a change in the network is triggered, for example, by a backup routine. In this
scenario, the backup routine uploads data to a server at a certain time interval. By
uploading the data, the data rate in the network increases for a short time.
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Figure 6.7: DUT 1 measurement run with data rate change after one second

We present the result of such a measurement run in Figure 6.7. Each measurement
point in Figure 6.7 represents the latency of a packet. The load generator sends
packets with Poisson distributed packet sizes between 64 Bytes and 1024 Bytes. We
record a total of 2 seconds. At the beginning of the measurement, we send with 100
MBit/s. After one second we increase the data rate to 200 MBit/s. We maintain
the increased data rate for the remaining second. The spike does not occur in the
middle of the graph because we display the packet latencies in the order of their
arrival. In the first second, we send 22,163 packets. After the data rate increase, we
send a total of 44,326 packets. That is why we are counting more packets after the
data rate increase.
The sudden increase in data rate results in a latency spike. We can observe the

latency spike at around packet number 22,200. The latency spike occurs after we
generate the first 22,163 packets at 100 MBit/s. Only with the knowledge about the
network status at time t− 1 we can make a statement about the behavior at time t.
Therefore, we have to store the network history in our model.
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Figure 6.8: Mean latency curve of the DUT 1 data rate change measurement

Since we only preserve the spike in Figure 6.7 and not the average latency change,
we show this separately in Figure 6.8. The line we show in Figure 6.8 represents the
mean latency of the data rate change measurement run. We observe that after the
data rate changes, the latency remains at a higher level than before. This is what
we expect, as we already show in Figure 6.1 that higher data rates, result in higher
latency values.

6.1.7 Influence of Cross Traffic

Our goal is to design the latency and packet loss model for real network conditions.
During our investigation of the latency and packet loss behavior of the DUTs, we
accessed the DUTs via SSH. We use the access to start several scripts that record
and save the desired CPU parameters locally on the DUT. After the measurement,
we transfer this data to the packet generator via SSH.
Part of a real network scenario is the generation of additional load on the DUT.

We generate this load, for example, by access to the web interface or configuration
via SSH. With the SSH connection generate cross traffic on the DUT.
In real applications, the DUT can be accessed at any time via a web interface,

SSH or monitoring tool. The problem with cross traffic is that we cannot simply
predict it. No parameter tells us when the access will occur. In order to determine
the impact on our latency and packet loss model, we need to determine how much
the cross traffic affects the latency and packet loss.
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We compare the latencies with and without cross traffic in Figure 6.9. Figure 6.9(a),
shows the latency behavior of the DUT 1 with SSH connection. In Figure 6.9(b),
we display the latency behavior of the DUT 1 without SSH connection. We perform
both measurements at 700 MBit/s, the Poisson distribution generates packet sizes
between 64 and 256 Bytes, and we configure no firewall rules on the DUT. We can
observe that the latency experiences more upward swings with cross traffic. These
outliers are due to the SSH traffic. As soon as the SSH connection transmits data,
the data rate and the composition of the packet sizes change for a short time. We
cannot accurately determine the latency and frequency of these outliers. This is
because we do not consider the exact composition of SSH traffic in our modeling.
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Figure 6.9: Latency behavior on the DUT 1 with/without cross traffic measurement
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Figure 6.10: Latency behavior on the DUT 1 with/without SSH connection

In another latency measurement, shown in Figure 6.10(a), we show the influence of
cross traffic on firewalls where we configure firewall rules. We measure the latencies
at 800 MBit/s. Our Poisson distribution generates packet sizes between 300 and
1024 Bytes. In addition, we configure 100 firewall rules. Due to the configured
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rules, the cross traffic generates a significantly higher latency spike. The DUT takes
even more time to process the packets due to the cross traffic.
In Figure 6.10(b) we show the same measurement but this time without the SSH

connection. We see that the random outliers disappear except for one. Latency
spikes can occur during measurements but by preventing cross traffic, we reduce
these outliers. System interrupts, for example, can cause such outliers.
The latency outliers influence the behavior of a DUT. However, as we observe

in Figure 6.10(b), a worst case can occur without cross traffic. The latency of
outliers influences the mean latency behavior of the DUT. By generating cross
traffic on the DUT during our profiling measurements, we train the latency and
packet loss model with this behavior. This provides us with a latency and packet
loss model that also works in real network environments. Without cross traffic in
the profiling measurements, our latency and packet loss model would predict too
low mean latencies.

6.2 Firewall
In this section, we examine the influence of firewall rules on the DUT performance.
First, we analyze the influence of firewall rule configurations on latency behavior.
Second, we describe the behavior when packets match at different firewall rule
positions. The third step is to show the effect of changing the firewall position during
the measurement recording. Finally, we show the influence on the performance that
connection tracking has. We perform the measurements for this purpose on the
DUT 1, see Table 5.2, for a definition of the devices.

6.2.1 Firewall Rule Configuration

In this section, we examine the effect of firewall rules on latency behavior. The
number of firewall rules plays a crucial role in the latency behavior of a firewall. To
determine the firewall rule-dependent latency, several measuring points are necessary.
We have exact firewall configurations that we test. Before we start the measurements,
we configure the number and order of firewall rules on the DUT using a SSH script
that we implemented. The measuring points we determine characterize the behavior
of a firewall. Using these measurements, we model the behavior of the firewall. Our
measurement takes place on the EAGLE40 with standard Ubuntu 20.04.3 LTS, we
use standard iptables (DUT 1).
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Figure 6.11: Measured mean latency for different firewall rule matching positions;
160 Bytes packet size and 500 MBit/s data rate

Figure 6.11 shows how the latency behavior of the DUT 1 changes with the
configuration of the firewall rules. We draw the box plot boxes from the first to
the third quartile. The horizontal line within the boxes denotes the mean latency.
In Figure 6.11, the whiskers show the maximum and minimum latency that we
observe. In this measurement, the packet size is constant at 160 Bytes, and the data
rate is fixed at 500 MBit/s. The only parameter we change is the position of the
matching firewall rule. We measured 0 | 50 | 100 | 400 | 1000 configured firewall
rules. The more firewall rules we configure before the matching rule, the higher the
latency is. The position where packets match in the firewall filter table influences
the firewall overload area. Due to the matching position, the overload area already
starts at less pps and the latency increases. Therefore, this parameter also plays a
decisive role in modeling a firewall. Based on these observations and our definition of
the overload area from Section 6.1.3, we analyze how the firewall rule configuration
affects the overload area.
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Figure 6.12: Comparison of firewall rule configuration measurements with 0 | 50 |
100 | 400 | 1000 firewall rules

In Figure 6.12, we compare the latency curves of all firewall rule configuration
measurements. Each line represents one latency curve for the corresponding number
of firewall rules. The blue line shows the latency behavior without firewall rules.
From about 500, 000 pps, the latency increases significantly, and the firewall reaches
its overload area. The red line, which represents the latency behavior with 400
firewall rules, already shows this at 160, 000 pps. The more firewall rules we configure,
the earlier the latency starts to increase, and the higher the maximum latency rises.
We call this point at which the latency starts to increase threshold. The overload
threshold is the point at which the DUT changes from the non-overload area to the
overload area.
We consider the threshold points separately in Figure 6.13. The Figure 6.13

shows the number of pps before the firewall enters the overload area. This pps value
represents our overload threshold. It is noticeable that the threshold decreases with
increasing firewall rule matching position. This means the more firewall rules we
configure, the closer the threshold of the overload area approaches 1 pps. We explain
this behavior by the fact that the firewall checks each rule before the matching rule.
The more rules we configure beforehand, the more rules our firewall checks until the
first one applies. The more rules the firewall checks, the more time it takes. With
iptables, we can configure the firewall rules in such a way that packet loss already
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occurs with the first incoming packets. The latency is accordingly immediately on
the overload area level. With this knowledge and the measurement results from
Figure 6.13, we deduce that the position of the applied firewall rule affects the
threshold of the overload area exponentially. The exponential function approaches
1 pps asymptotically.
The dashed curve is the result of fitting an exponential function with the five

measured thresholds and the Python SciPy curve fit function. We use the Python
SciPy curve fit function to fit the data we observe to an exponential function. The
result has such a high deviation, compared to Figure 6.14, because too few points are
available for the curve fit function. To overcome this problem, we interpolate linearly
between the points to generate fifty additional points for the fitting function. How
we deal with the increased measurement error due to the interpolation is described
in Section 6.5.9.
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Figure 6.13: Firewall rule configuration measurement and threshold curve without
optimization

52



6 Implementation

0 200 400 600 800 1,000
Firewall rules

100,000

200,000

300,000

400,000

500,000

600,000

Pa
ck

et
s p

er
 se

co
nd

 (p
ps

)

Fitted threshold curve
Measured threshold

Figure 6.14: Firewall rule dependent threshold in pps with linear interpolation
between measured points

With the help of interpolation, we get a much better result in terms of fitting the
exponential function to the points. In Figure 6.14 we show the optimized fitted curve.
We interpolate linearly between the measured thresholds. In the figure, we connect
the points linear. The dashed line represents the result from our curve fitting. The
deviation between the measurement points and our adjusted exponential function is
6.25%. Before our optimization (Figure 6.13), the deviation was 74.82 %.
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Figure 6.15: Firewall rule dependent threshold in pps with more measured points;
Compare with Figure 6.14

As soon as we include more measuring points in our test, the measurement takes
longer, but we do not get a better fitting result. For illustration purposes, we show
the result in Figure 6.15. We measure the same firewall with nine firewall rule
configurations instead of five. We observe that the measurement results decrease
linearly between 200 and 500 firewall rules. Four additional firewall rule configurations
increase the measurement time by approximately 80%. Nevertheless, the deviation
between the measurement points and the adjusted exponential function is 7.66%.
With a linear interpolation between 200 and 500 firewall rules, we would observe the
same result and save ourselves two firewall rule configuration measurements.
We derive the overload threshold function from the measurement data of our

firewall matching rules. Based on this overload threshold function, we predict the
overload threshold value. Equation (6.2) is the exponential function that we use
for fitting our threshold behavior. The variable n determines the average firewall
matching position. The overload threshold function asymptotically approaches 1 pps.
There cannot be an overload threshold at zero or a negative pps value. We define
that the overload threshold function is only valid in the positive value range.

g(n) = a · e(−b·n) + c (6.2)
g(n) ∈ R+ (6.3)
n ∈ R+ (6.4)

Based on the calculated exponential function, we determine the firewall-dependent
overload threshold. The overload threshold function represents a part of the firewall
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rule influence in our model. As already mentioned, the number of rules that the
firewall needs to check influences the latency. To predict the latency influence, we
use the firewall matching rule measurement we already did. From the measured
values, we average the latencies in the overload area and the non-overload area. By
doing this for each measurement configuration, we obtain several points that we use
to predict the latency behavior. Figure 6.16 shows the averaged latencies for the
overload area and the curve fitted to the firewall matching rule measurements. The
measurement results show us that the latency increases linearly from 459.91 µs with
0 firewall rules to 3, 155.56 µs with 1000 firewall rules. Our function that we fit
to the measuring points is thus also linearly increasing. We explain the measured
latency behavior by the way the filter table works. The firewall checks for every
packet any rule in the filter table until it finds a match. The more rules we configure
before the applicable rule, the longer this comparison takes. Since the number of
rules is limited only by the used hardware, the latency increases linearly with the
number of configured rules.
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Figure 6.16: Firewall rule dependent latency offset for the overload area
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Figure 6.17: Firewall rule dependent latency offset for non-overload behavior

For the non-overload area, the latency increases with an increasing number of
rules, but not monotonously. Figure 6.17 shows this behavior. We show in Figure 6.17
that the latency in the non-overload area varies and increases with an increasing
number of firewall rules. With 0 firewall rules we measure 33 µs this decreases to
26.6 µs with 50 firewall rules and with 100 firewall rules the latency increases to
37.8 µs. In comparison to the overload area in Figure 6.16, the slope of our fitted
function is not so large.
In Figure 6.18 we show the latency curve for several measuring points. Figure 6.18

shows how differently the latencies behave in the non-overload area. The average
firewall rule matching position does not affect the non-overload area as much as
the overload area. Nevertheless, an increased matching position leads to higher
latency in the non-overload area of the firewall. Normally, we would expect the
latency to increase with the increasing number of firewall rules. However, there are
some deviations in our measurements where the latency drops unexpectedly, as we
observe in Figure 6.17. The deviations of the latencies upwards and downwards are
due to measurement errors. In Section 6.5.9 we describe how we deal with these
measurement errors.
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Figure 6.18: Firewall rule dependent latency offset for non-overload behavior with
nine firewall rule configurations

From our discoveries about the latency offset shift, we create the following function:

h(n) =

{
i · n+ j p ≥ g(n)

d · n+m p < g(n)
(6.5)

h(n) ∈ R+ (6.6)

In Equation (6.5), h(n) determines the latency offset that the average matching
position of the firewall specifies. In our model, we select the function depending on
the pps value, p. If p is greater than or equal to g(n), we use the overload offset
function to determine the latency. The knowledge we collected on the firewall rule
matching position dependency is useful for our prediction model.

6.2.2 Average Firewall Rule Position

In a real network scenario, all packets do not match only one firewall rule, because
the packets have different source and destination addresses. Thus, in an example
configuration with 100 firewall rules, 25 % of the packets match at position 20 and
75 % match at position 40. This difference also affects the latency, since the packets
that match at position 20 have a smaller latency than those at position 40. We
solve this problem by specifying the average firewall rule matching position. In the
preceding example, the packet distribution results in an average matching position
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of 35. The entire traffic then behaves as if all packets match at position 35. We
demonstrate this behavior with an example in Figure 6.19.
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Figure 6.19: Latency in microseconds; Comparison between firewall rule matching
position 50 and average firewall rule matching position 50; 100 MBit/s
data rate and Poisson distributed packet sizes between 64 Bytes and
1024 Bytes

In Figure 6.19, we show the latencies of two measurements. We draw the box plot
boxes from the first quartile to the third quartile. The horizontal line within the
boxes denotes the median latency. The whiskers span 1.5 times the inter-quartile
range (IQR) from the box. Points drawn outside the whiskers are outliers. The
box-plot with the label 50 corresponds to a measurement in which all packets match
at the firewall rule position 50. In this measurement we observe a mean latency
of 59.28 µs. The other box-plot corresponds to a measurement where 50 % of all
packets match at position 1 and the rest matches at position 99. Our measurement
with the average matching position 50 results in a mean latency of 59.55 µs. Despite
the different matching positions, the latencies and jitter behave approximately the
same. In our model, we therefore consider the average matching position.

6.2.3 Firewall Rule Matching Position Change

In another measurement, we observe what happens by changing the position of
the firewall rule matching position. We measure what happens when we move the
average matching position from 1 to 2000 during the measurement run. Because
we want to provoke the firewall directly into the overload behavior, we choose the
matching position change so large. In this measurement, we generate the packets at
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a data rate of 100 MBit/s. The Poisson distribution generates packet sizes between
64 and 1024 Bytes. In Figure 6.20, we plot every packet latency we measure as a red
point. The black dash-dot line represents the mean latency of all packet latencies in
this measurement run. If we look at the result of this measurement in Figure 6.20,
we notice that there are no spikes in the measurement. In contrast to the data
rate increase, the change of the firewall rule matching position does not lead to any
latency spike. After we change the firewall rule matching position from 1 to 2000,
the latency increases from an average of ≈ 59 µs to ≈ 82 µs. This corresponds to
the behavior we describe in Section 6.2.1. The latency remains at the higher latency
level after the matching position change. This means for our modeling that we have
no additional effort concerning the rule change.
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Figure 6.20: DUT 1 measurement run with firewall stateless rule matching position
change after one second form 1 to 2000; Constant 100 MBit/s data rate;
Poisson distributed packet sizes between 64-1024 Bytes

6.2.4 Influence of Connection Tracking

So far, we did not look at the influence of connection tracking on the behavior of
the firewall. In this chapter, we will examine connection tracking. Firewalls allow
connection tracking with the configuration of stateful rules. The implementations
differ between the various software firewalls. Connection tracking is an essential part
of many firewalls. Many networks use connection tracking, hence its implementation
needs to be efficient. Below we discuss the implementation of connection tracking.
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First, we examine the connection tracking functionality of iptables. Second, we
discuss how VPP implements connection tracking.

6.2.4.1 Iptables Connection Tracking

Iptables is a kernel module of Netfilter and is only used to communicate with Netfilter
in the Linux kernel [47]. This means that Netfilter controls the connection tracking.
To control the connections, Netfilter uses the conntrack module. The Netfilter kernel
loads this module automatically on demand [14]. The exact conntrack implementation
depends on the respective kernel. We show the general packet flow in Figure 6.21.
Every incoming packet first passes through the Prerouting hook [14]. This calls

the conntrack function and checks if the packet is one of the following possible things:

• It is part of or related to a tracked connections.

• The first packet of a not yet tracked connection.

• An invalid packet.

• Marked as NOTRACK.

If the first packet is already part of an existing connection, the conntrack system
looks in a central hash table to find the possible match. The packet then receives a
pointer to the corresponding entry. This is necessary for further kernel modules. In
our example, we assume that we forward the packet. Accordingly, it passes through
the forward hook. The packet must also pass through the forward filter chain,
despite the already existing pointer. If iptables finds the appropriate stateful rule,
the packet continues sending. The Postrouting hook processes the packet further.
In this case, the conntrack help+confirm function has no effect [14].
The second point assumes that the packet is the first of a connection we do not

track yet. In this case, the packet also passes through the Prerouting hook. As in
the previous case, the conntrack function searches for a match in the hash table.
Since iptables finds no entry this time, the function creates a new struct for the
packet. The conntrack system still sees the packet as "unconfirmed", therefore it is
not yet saved in the central hash table. On its way through the forwarding hook,
the forward filter chain checks the packet. After iptables finds the appropriate rule,
iptables processes the packet in the Postrouting hook. The last function that the
packet traverses before it continues is the conntrack help+confirm function. The
purpose of this function is to confirm the new connection. To do this, conntrack
moves the connection instance from the unconfirmed list to the connection table.
From this point on, the connection is part of the hash table and conntrack tracks
the connection. This is because iptables can drop the packet between the first
conntrack function and the conntrack help+confirm function. An example of this:
In the forward chain, the administrator defines a rule that drops the corresponding
connection. This way conntrack ensures that the connection table does not fill
unnecessarily.
If we send an invalid packet, conntrack will not discard the packet. Conntrack

registers it as invalid and sends the packet on. This is because there can also be
stateful rules with an INVALID state.
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Figure 6.21: Iptables chains
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If we mark a packet as NOTRACK, conntrack ignores the packet.
In the implementation of iptables connection tracking, every packet traverses the

filter chains. Regardless of whether iptables finds an entry in the conntrack table.
An example of why this behavior is useful: If the administrator configures a stateful
rule, conntrack generates the corresponding entry in its table after the first packet
of this connection. After some time, the administrator reconfigures the firewall.
The administrator not only deletes the corresponding stateful rule. Instead, he
configures a rule that drops this connection. Without checking the filter table for
a match, the following occurs. In this case, every packet that we generate directly
after the reconfiguration is not affected by the change. The reconfiguration would
only take effect after the conntrack timeout expires. This can take more than five
days.
Now let’s look at the effects of this behavior on our DUT. In Figure 6.22 we

show the result of a measurement with configured stateful rules. Our goal in this
measurement is to show how the latency behaves when we configure stateful rules.
Each red dot represents the latency of a single packet. The black dash-dot line
represents the average latency of the packets. In the first second of our measurement,
the matching firewall rule is at position one. After one second, the matching stateful
rule changes to position 2000. We observe that the mean latency increases from
≈ 56 µs to ≈ 83 µs. The data rate is constant at 100 MBit/s during the entire
measurement. The packet generator sends Poisson distributed packets with 64-1024
Bytes size.
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Figure 6.22: DUT 1 measurement run with firewall stateful rule matching position
change after one second form 1 to 2000; Constant 100 MBit/s data rate;
Poisson distributed packet sizes between 64-1024 Bytes
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Note that the latency increases significantly after the rule position change. We
show that despite the connection tracking, each packet has to pass through the 2000
rules until it reaches the matching rule. In comparison, we observe the same increase
in Figure 6.20. The measurement conditions are the same except for the type of
matching rules. In Figure 6.20 we use stateless rules and in Figure 6.22 stateful
rules. Since we observe the same behavior, we show that connection tracking with
iptables does not reduce latency.

6.2.4.2 VPP Connection Tracking

VPP is another software firewall we are investigating. In this section, we describe
how VPP enables connection tracking. We focus on the differences between VPP
and the connection tracking implementation of Netfilter.
VPP uses an ACL plugin to support stateful and stateless ACLs. Stateful rules in

VPP are ACL rules with the action permit+reflect. Since the stateful rules are the
most used, they are heavily optimized [48]. Just like conntrack in iptables, VPP uses
a hash table to store connections. Unlike conntrack, VPP only generates entries if
we configure a corresponding ACL permit+reflect rule. Thus, VPP only has to take
the overhead of generating the entry once. After that, only one look-up is necessary
for each packet of this flow.
For each incoming packet, the VPP firewall looks in its connection table to check

if there is an existing entry. If VPP finds a suitable entry, it forwards the packet
straight on and does not check the other ACL rules. This approach creates an
enormous latency advantage over iptables.
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Figure 6.23: DUT 3 measurement run with ACL rule permit+reflect matching
position change from 1 to 2000 after one second; Constant 100 MBit/s
data rate; Poisson distributed packet sizes between 64-1024 Bytes

Figure 6.23 shows the latency behavior of VPP. As in our measurement in
Figure 6.22, we first configure the matching firewall rule at position one. After
one second, we send a packet flow that matches a stateful rule at position 2000.
With VPP, the matching rule change does not affect the latencies of the packets.
The mean latency remains constant at ≈ 23 µs. This shows that the procedure in
VPP offers better performance with stateful rules.

6.3 Central Processing Unit (CPU) Measurement
We determine how the CPU frequency, CPU temperature, and memory usage behave
during a measurement. To determine the influence that the hardware has on the
performance of the DUT, we measure various CPU parameters. We display the
CPU parameters in relation to the data rate. We especially want to examine how
the CPU parameters change in the overload behavior. This ensures that the firewall
reaches a packet loss scenario.
CPU frequency, CPU temperature, and memory usage can all be indicators of

improving or deteriorating performance. First, we examine the CPU frequency.
With a constant load, an increase in CPU frequency can lead to faster processing of
tasks, and a decrease in frequency can slow down processing. Second, we look at the
CPU temperature. In general, temperature affects the performance of all electronic
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devices, so we also examine the CPU temperature behavior. The temperature limit
behavior is examined more precisely in Section 6.4. Third, we consider memory
usage. With an overloaded memory, the DUT is no longer able to process packets. If
this occurs during our measurements, it can be a reason for decreasing performance.
Finally, we show the effect of our CPU parameters on the packet loss.

6.3.1 CPU Frequency

To determine the influence of the CPU frequency, we record its course three times in
our CPU parameter measurement. Figure 6.24 shows the CPU frequency curve of the
DUT 1 processor during a CPU parameter measurement. Each point corresponds
to the average CPU frequency in MHz at the respective data rate. We show
the standard deviation with the help of the error bars. For this CPU parameter
measurement setup, we did not configure any firewall rules on the DUT. We
generate additional cross traffic by opening and closing SSH connections during each
measurement run. The SSH connections allow us to start and stop the hardware
parameter logging. The curve in Figure 6.24 shows that the frequency fluctuates
between 1, 592.5 MHz and 1, 595.5 MHz but changes only minimally in absolute
terms. At low data rates, the CPU frequency is not below the one for high data
rates. Even under overload at 1000 MBit/s, which corresponds to the dark red
area in Figure 6.3, the CPU frequency does not increase. This shows that the CPU
frequency does not affect the latency result in a basic measurement.
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Figure 6.24: Average CPU Frequency in MHz during a base measurement with an
average packet size of 160 Bytes on DUT 1
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6.3.2 CPU Temperature

Since the temperature has an impact on the behavior of electronic devices, we
investigate how it affects latency and packet loss on our DUT. We measure at
22 degrees Celsius ambient temperature without firewall rule configuration and
only cross traffic through SSH connections. We show the CPU temperature curve
during our CPU parameter measurement in Figure 6.25. Under normal ambient
temperature conditions, the CPU temperature increases only less than 1 degree
Celsius during our CPU parameter measurement. The CPU temperature, therefore,
hardly increases during our CPU parameter measurement. In other words, the
network traffic does not increase the CPU temperature. The increase in network
traffic does not trigger a self-perpetuating process in which the CPU temperature
continues to rise. We investigate the temperature influence on the performance in
Section 6.4 in more detail.
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Figure 6.25: CPU Temperature in degree Celsius during a base measurement with
an average packet size of 160 Bytes on DUT 1
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6.3.3 Memory Usage

We measure the memory usage to trace possible packet loss back to excessive
memory usage. Figure 6.26 displays the memory usage behavior during the same
measurement we used for generating Figure 6.24 and Figure 6.25. Memory utilization
is constantly increasing but is relatively low at a maximum of 5.9%. Despite the
additional cross traffic, there are no outliers in the memory utilization. The overload
range does, therefore, not lead to an overload of the memory.
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Figure 6.26: Memory usage in % during a base measurement with an average packet
size of 160 Bytes on DUT 1
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6.3.4 Packet Loss

In this section, we put our previous results from the CPU parameter measurement
in relation to the packet loss. Figure 6.27 displays the corresponding packet loss
for this CPU parameter measurement. If we compare the knowledge gained about
the various hardware parameters with the packet loss, it becomes clear that the
parameters have no direct influence on the packet loss. Packet loss occurs in our
CPU measurement above 300 MBit/s and then continues to increase. In comparison,
memory consumption increases linearly. The temperature hardly increases during
a measurement. Despite increasing packet losses, the processor frequency barely
changes. Thus, under normal conditions, the measured CPU parameters have no
direct influence on the packet loss of the DUT. For our modeling, we do not need
to consider the CPU frequency, CPU temperature, and memory usage.
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Figure 6.27: Packet loss in % during a base measurement on DUT 1
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6.4 Temperature Influence
In this section, we describe in detail why we do not consider the temperature
influence on the DUT for our modeling. To determine how far the DUT depends
on the temperature, we focus on the vendor-specific temperature window for the
DUT. Since the temperature window of the tested EAGLE40 goes up to 105 degrees
Celsius [43], we heat it up to a temperature window of 97 to 120 degrees Celsius.
This results in an accurate picture of the threshold range of the DUT.
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Figure 6.28: DUT 1 temperature curve comparison between temperature
dependency test and normal ambient temperature (22 degrees
Celsius)

Figure 6.28 shows two temperature curves, one for our temperature dependency
test measurements and one for our measurement with normal ambient temperature.
At normal ambient temperature (22 degrees Celsius), the CPU has a temperature
range between 34 and 35 degrees Celsius. During our “Temperature dependency
test“ in Figure 6.28, we applied different temperatures for each data rate. At 200
MBit/s, we reach the specified limit of 105 degrees Celsius. To investigate this
threshold in more detail,Figure 6.29 shows the observed measurement points at 200
MBit/s. The maximum temperature we generate on the DUT is 120 degrees Celsius
at 600 MBit/s.
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Figure 6.29: DUT 1 measurement with 200 MBit/s data rate and 64 Bytes packet
size; Record time 2 seconds; Comparison between temperature increase
and CPU frequency decrease

Figure 6.29 shows that the CPU frequency and the temperature curve in compar-
ison. The CPU frequency remains constant at around 1, 600MHz below 105 degrees
Celsius CPU temperature. As soon as the temperature rises further, the CPU
frequency drops drastically. The firewall tries to prevent damage from overheating by
lowering the frequency to ≈ 400MHz. This changes the CPU frequency behavior of
the DUT. During our measurements under normal ambient temperature, the CPU
frequency barely changes, as we describe in Section 6.3.2.
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Figure 6.30: DUT 1 packet loss comparison between normal ambient temperature
and temperature dependency test

In parallel to the decreasing CPU frequency, the packet loss increases. We show
this in Figure 6.30. As soon as the temperature exceeds 105 degrees Celsius, the
packet loss increases rapidly to over 80 %. The „Normal ambient temperature“ in
Figure 6.30 describes the CPUs packet loss during a measurement with 22 degrees
Celsius ambient temperature. The packet loss starts at 300 MBit/s and increases
to around 65 %. We present the CPU temperature behavior at 22 degrees Celsius
ambient temperature in Figure 6.25. Compared to the normal ambient temperature,
the packet loss in our temperature dependency test increases earlier and more steeply.
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Figure 6.31: DUT 1 frequency comparison between normal temperature and
temperature dependency test

To exclude a general drop in frequency at higher data rates, we compare the
CPU frequencies between our normal ambient temperature measurement and our
temperature dependency test measurement in Figure 6.31. This shows that the
CPU’s frequency barely changes under normal ambient temperature conditions. The
frequency remains at 1600 MHz. The high temperature forces the CPU to reduce
the frequency. When we increase the temperature, the frequency drops to 400MHz.
The extreme temperature causes packet loss on the DUT.
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Figure 6.32: DUT 1 memory usage in % comparison between normal temperature
and temperature dependency test

To learn more about the effects of temperature, we also examine the memory usage
behavior of the DUT. For this purpose, we compare the memory consumption with
increased CPU temperature and without increased temperature in Figure 6.32. The
figure shows the memory consumption during the temperature threshold measure-
ment at 200 MBit/s. It is noticeable that there is no increase in memory utilization
despite the increase in temperature. The memory utilization does not change during
the temperature dependency test as well as during the normal ambient temperature
test. The high temperature has no negative effect on memory. This means that the
packet loss and thus the increase in latency is directly related to the reduction in
CPU frequency.
We thus show in Figure 6.29, Figure 6.30 and Figure 6.31 that only temperatures

above 105 degrees Celsius have a direct influence on the latency. As our EAGLE
40 is only approved for temperatures up to 105 degrees Celsius, these results have
an impact on our model definition. As for each DUT, the allowed temperature can
vary, we define our model only for the respective operating temperature window.
Temperatures above the operating temperature window are not part of the normal
working environment. Therefore, we do not consider these extreme cases in our
model. In our model, we assume that the ambient temperature is within the
permitted operating window.
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6.5 Prediction Model
In this section, we explain in detail how we build our latency prediction model. We
start by describing how we select our prediction function. Second, we describe the
latency behavior prediction. Third, we extend our model with the ability to predict
firewall configuration effects. Fourth, we show how our model handles additional
information about network traffic. Afterward, we discuss why it is necessary that
our model can predict the latency in a time interval. The next step in our model is
the ability to predict packet loss. We then show how to automate the model finding
process and test its robustness. Finally, we address the accuracy of our model.

6.5.1 Selection of the Prediction Function

In order to build a model for firewalls, we need some basic measurement data about
the DUTs. We generate the basic measurement data through base measurements.
Based on these measurement results, we determine the appropriate prediction func-
tion.
The following procedure helps us to find a suitable prediction function:

1. Evaluation of multiple measurement results

2. Determination of a suitable measurement

3. Determination of a selection of prediction functions that fit the measurement
data

4. Calculation of the function parameters

5. Optical comparison and calculation of the square distance

6. Adjustment test

7. Selection of the prediction function that performs best at 5. and 6.

To obtain reliable data, we repeat the measurements several times to eliminate
possible measurement errors. We combine the latency and packet loss measurement
results in a reliable measurement image that serves as a basis for the selection of
a prediction function. Once we determine a set of suitable prediction functions,
we calculate their function parameters. Next, we compare the fitted prediction
function visually with the original measurement data. To determine the accuracy,
we calculate the squared distance. We change the function parameters to increase the
accuracy of the prediction function. Through testing different prediction functions
with different parameters, we find the prediction function that fits the measurement
results best. We use the best prediction function for our further modeling.

6.5.2 Normal Latency Prediction

In this section, we model the basic DUT behavior with our traffic. In Section 6.5.1,
we describe the procedure to obtain a suitable function. This also includes a visual
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comparison of the measurement results. At the beginning of the implementation
section, we consider the factors packet size and data rate individually. To graphically
represent the behavior of the DUT, we create a 3D model. The resulting 3D model
in Figure 6.3 shows the influence of the two parameters on the latency.
Figure 6.3 shows the latency curve across the data rate and the packet size. We

show how the combination of a high data rate and a small packet size leads to an
extreme increase in latency. Combining the two parameters reduces the complexity
of our model. To do so, we combine both parameters in the common unit pps. As
a result, we have a more straightforward presentation of the measurement results.
This makes modeling easier because we are looking at one parameter instead of two.

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000
Packets per second (pps)

0

100

200

300

400

La
te

nc
y 

in
 m

icr
os

ec
on

ds
 (

s)

Poisson distribution packet size

Figure 6.33: DUT 1 base latency measurement in µs with no firewall rules configured

In Figure 6.33, we show how the simplified representation with pps looks like.
We created those with a basic measurement on the EAGLE40 using iptables (DUT
1). During a basic measurement, we configure no firewall rules on the DUT. Each
point in the figure represents the mean latency of the DUT for a corresponding pps
configuration. The lowest latencies are 16.6 µs (below 1, 000 pps) and the highest
are 459.95 µs (above 620, 000 pps).
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Figure 6.34: DUT 1 base latency measurement in µs average packet size distribution
with no firewall rules configured

The measurement results show that the latency of the iptables firewall on the DUT
increases suddenly. From this point on, the latency remains constantly high. We
refer to this area as overload area. In Figure 6.34, we show the same measurement
again. We distinguish the measurement results in Figure 6.34 by their average
packet size. We notice that the overload area only occurs with the small packet size
range. Because there are too many packets that have to be processed by the firewall.
Knowing why the firewall enters the overload area is important for our model.
Our model is intended to predict the behavior of a firewall. To do this, we use

functions that help us model the latency behavior. To find the ideal function, several
iterations and adjustments are necessary until the result is satisfying.
At the beginning of our research, we considered modeling with GPR. The ability

to enter an unlimited number of parameters into the regression seemed promising.
This way, we can use all measurable parameters of the firewall for the modeling
without measuring their relevance. Unfortunately, the GPR requires a large amount
of training data to provide adequate results. For us, this would mean that profiling
a firewall becomes much more complex. The increasing complexity leads to long
measurement times. To create an accurate model, our profiling has to test almost
every possible configuration of the firewall. Such a scenario is not realistic. It
is not part of our model to test all firewall configurations in advance. Since the
GPR chooses the function itself, it can happen that the GPR chooses a polynomial
function with a high degree. Unfavorable positioning of two measurement points
can cause the phenomenon of Runge as described in Section 3.6. This results in
incorrect predictions. Due to these disadvantages, we do not pursue modeling with
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the help of the GPR.
Modeling with the help of self-selected functions, on the other hand, is more

promising. With the help of curve fit, we can fit various functions to given data
points. The SciPy curve fit function calculates the function parameters for the
function we select. Before we calculate the parameters, we need to choose a function
that represents the behavior best. Since the measurement points cover two latency
ranges, a sigmoid function seems like a good choice. To illustrate this graphically,
we show in Figure 6.35 what the adjusted sigmoid function looks like. The sigmoid
function is constant from 0 pps to about 550, 000 pps, then the function increases
linearly from about 18.3 µs to 454.7 µs. From ≈ 580, 000 pps, the function remains
constant again. With a few measuring points, we can represent the characteristics
of the DUT in a function. However, the sigmoid function has several disadvantages
for our modeling. First, the overload increase in latency for the tested firewall is
not continuous, but abrupt. When using the sigmoid function in our modeling,
we cannot represent a sudden latency increase. The prediction of latencies in the
transition region leads to significant deviations from reality. Another disadvantage
of the sigmoid function is the lack of possibility to model the non-overload area more
precisely.
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Figure 6.35: DUT 1 base measurement with sigmoid prediction function

Our measurement results in Figure 6.35 show a large variance between the function
and the measurement results, especially in the range of fewer than 300, 000 pps. We
can move the lower range of the sigmoid function upwards or downwards on the
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y axis. However, the deviations are still large. Due to the properties of the sigmoid
function, we can’t model the non-overload are more flexibly.
To better model not only the overall behavior but also the individual load areas,

it makes sense to cluster the data points. For this modeling approach, we use two
prediction functions in Figure 6.36. During the creation of this model, we divide
the data points into an overload and a non-overload area. The blue line represents
the non-overload area prediction function, and the green line represents the overload
area prediction function. We represent the non-overload and overload area in this
example by linear functions. Each function represents the respective area as well as
possible.
The transition to the firewalls overload area is directly visible. The separation

enables us to map the sudden increase in latency without a transition period. In
this type of modeling, we notice that the variance is large, especially in the non-
overload area. Accordingly, we continue testing various other functions for this area
to find a better representation.
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Figure 6.36: DUT 1 base measurement with two linear prediction function
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Figure 6.37: DUT 1 base measurement with a quadratic and linear prediction
function

Curve fit with a quadratic function allows a better mapping of the latency behavior
of the DUT. We show a model with a quadratic function (blue line) for the non-
overload area prediction in Figure 6.37. In addition, we extend the function of the
overload area, so we can predict more conservatively in the threshold area. Without
this adjustment, our model predicts a much lower latency in the overload threshold
area. An under-predicted latency is much worse than an over-predicted latency. In
the worst case, an application expects a packet but due to a too aggressive latency
prediction, the packet does not arrive at the application. We, therefore, tend to
predict higher latencies.
We use the gained knowledge to define our functions for latency prediction. We

formally present our modeling functions in Equation (6.7). The variable x determines
the pps value for which we predict the latency. For all pps points up to the overload
threshold we use a quadratic function for the latency prediction. The function g(n)
(Equation (6.2)) determines this overload threshold. Above the overload threshold,
we use a linear function to describe the overload area. With the variable n we specify
the average matching position of the firewall rules.

f(x) =

{
ax+ b x ≥ g(n)

cx2 + dx+ e x < g(n)
(6.7)

f(x) ∈ R+ (6.8)
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Figure 6.38: Predicted latency for our DUT 1 base measurement without firewall
rules; The red points originate from our base measurement without
firewall rules

The quadratic function represents the non-overload area very well. To show this,
we plot in Figure 6.38 the latencies we predict for the base latency measurement.
Each red point in the figure corresponds to the real latency that we measured, and
the pluses correspond to the latency prediction by our model. In the non-overload
area, our predictions have a larger spread from the real latencies than in the overload
area.
To better illustrate the deviation between our prediction and the real measured

latency, we use the letter-value plot in Figure 6.39. We explain the detailed structure
of a letter-value plot in Section 3.5. We observe that most deviations are close to
0 µs. The letter-value plot shows that most of our predictions have a minimal
deviation. However, some predictions have a deviation of almost 35 µs. The mean
of all deviations for this measurement is ≈ 0 µs. With a probability error of 5 %,
the true mean is between −3.43 µs and 3.43 µs. For smaller packet sizes, the mean
value of our deviation is −7.77 µs. This means we predict for small packets a higher
latency compared to the real latency. We explain the improvements we made to our
model with additional network traffic information in Section 6.5.4.
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Figure 6.39: Deviation between our latency prediction and the latency we observed
through our profiling on the DUT 1

6.5.3 Firewall Rule Dependent Latency Prediction

So far, our modeling can only predict the latencies without the influence of the
firewall rule. To properly incorporate the influence into our model, we need to
consider the knowledge from Section 6.2.1. Firewall rules shift the overload threshold
and overall latency of a DUT. In Equation (6.2) we already demonstrated how
we use the firewall rule matching position to predict the overload threshold. In
Section 6.5.2 we use the threshold to determine the prediction function. Since we
know from Section 6.2.1 that the matching position n also influences the latency,
we have to adjust our function parameters even further. Using the firewall rule
matching position, we determine the firewall rule-dependent latency offset. We show
our adjusted functions in Equation (6.9).

f(x) =

{
ax+ h(n) x ≥ g(n)

cx2 + dx+ h(n) x < g(n)
(6.9)

Function h(n) indicates the latency offset. We use this offset in our functions
to shift the latency prediction in the y direction. This way we map the firewall
rule-dependent factor in our model.
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Figure 6.40: Firewall rule dependent prediction on DUT 1 with firewall rule
matching position at 400; The brown points originate from our profiling
with 400 firewall rules

The functions are shifted appropriately in the y and x direction by our adjustments.
We show an example of our prediction with firewall rule configuration in Figure 6.40.
The brown dots represent the mean latencies we measure with 400 firewall rules.
Our model predicts the DUT 1’s behavior with 400 firewall rules configured. The
400th rule is the matching rule. In comparison to our prediction, we show what
the behavior looks like in reality. We generated the data points on the DUT 1 by
measuring with 400 firewall rules configured. We show that our model can reproduce
the behavior of the DUT 1. Through our model adaptations, we also enable the user
to predict the behavior of the DUT with firewall rules.

6.5.4 Latency Prediction with Additional Network
Knowledge

So far, our model can predict the behavior of the DUT based on general network
information. We do not take into account whether we generate mainly certain
packet groups in the network. Figure 6.34 shows that the latencies we measure
are divided into different packet sizes. If we know the packet sizes, our model
deviates significantly from the actual latency, especially in the non-overload area.
We introduce an optimization in our model where a prediction is made in the non-
overload area for small and large packet sizes. A more accurate prediction of the
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non-overload area helps us to meet the requirements of industrial networks and
real-time traffic.
In Figure 6.41, the orange points represent the latencies of the large packets and

the violet points represent the latencies of the small packet sizes. Under non-overload
conditions, large packets have a higher latency than small packets. This is the result
of the physical transmission time of larger packets. To ensure that the additional
knowledge about network traffic does not remain unused, we offer optimization for
our model. We calculate two additional functions for the non-overload area. One
function for rather small packets and the other function for rather large packets.
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Figure 6.41: DUT 1 behavior prediction with additional network knowledge; The
orange and violet points originate from our profiling without firewall
rules

To avoid creating a separate function for each packet size, we divide the existing
data into two groups. We group the smaller packets into 160-544 Bytes. Furthermore,
we group the large packets as a 544-928 Bytes group. The two groups overlap
intentionally. The overlapping packet sizes form the medium-sized packets. In
addition, we do not have to choose a fixed limit but rather allocate the packets
to the groups on a percentage basis. We take half of the measured packet sizes as
the threshold value. We multiply this value by 1.25 to get the upper limit of the
packet sizes that come into the small packet size group. We collect all packet sizes
larger than the threshold in the large packet size group. In our example, the 544
Bytes packets form the intersection between the two groups.
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With the additional information about the network traffic, our model can predict
the behavior of the DUT better. The two functions in the non-overload area are
much more accurate than the normal prediction in Figure 6.37.

fsmall(x) = ax2 + bx+ hsmall(n) (6.10)

flarge(x) = ax2 + bx+ hlarge(n) (6.11)
flarge(x) ∈ R+ (6.12)
fsmall(x) ∈ R+ (6.13)

x ∈ Z+ (6.14)
(6.15)

In Equation (6.10) and Equation (6.11), we show the functions for our non-
overload area prediction with additional network knowledge. Equation (6.10) displays
the latency prediction of the small packet size group. The Equation (6.10) is the
same we use in Equation (6.7). The difference is that we calculate the latency
offset (Equation (6.5)), this time, based on the small packet sizes. We characterize
this by the function hsmall(x). For Equation (6.11), we determine the latency offset
(Equation (6.5)) using the large packet sizes, hlarge(x). Without constraints, the
function could predict 0 µs, depending on the parameters selected. A latency of
0 µs is not realistic, hence our adjustment. If the user has additional information
about the expected network traffic, we can use this information in our model. This
makes our prediction more accurate for the specific network traffic.

6.5.5 Latency Prediction in a Time Interval

So far, our model can determine the static behavior at a time t. We do not yet
consider changes in the traffic model, besides the packet size, during a measurement
run. For our model, we not only predict the higher latencies after the data rate
increase but also model the spike.
In Figure 6.42 we show how the prediction of the mean latency spikes looks.

Each line represents a different data rate. We assume a prediction period of 43
seconds. The Poisson distribution range for our packet sizes is constant through
this prediction period. We start with a data rate of 20 MBit/s. After the first 4
seconds, we assume that we increase the latency by 100 MBit/s. We observe that
our model predicts the spike. Then we assume that the data rate remains constant.
After 5 seconds, we repeat the latency increase. We repeat this until we reach 820
MBit/s. Since our model stores the network history, it notices the data rate increase.
Accordingly, the model adjusts its latency prediction. For each change in data rate
from time t− 1 to time t, our model predicts a latency spike. That is why we show
several latency spikes in Figure 6.42.
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Figure 6.42: Predicted mean latency curve for the DUT 1 with data rate change;
Prediction time interval 43 seconds

6.5.6 Packet Loss Prediction

Until now, our model can predict the latency of the DUT. Especially in industrial
networks, latency alone is not an important feature. Industrial networks also need
information about the packet loss behavior of the DUT. Therefore, a packet loss
prediction is still missing in our model. To include the packet loss in our model, we
first need to look at the packet loss in our previous latency measurements.
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Figure 6.43: Packet loss during a basic measurement on the DUT 1

In Figure 6.43, we show the packet loss that we measured as a dashed line. We
observe that the packet loss is mostly non-existent until it increases significantly
at about 500, 000 pps. By comparing the increase in packet loss with the latency
measurement results in Figure 6.33, we see that the packet loss occurs when the
firewall enters its overload area. To better understand packet loss, we examine
what happens to packet loss after changing the firewall matching position. For
this purpose, we investigate the packet loss behavior with different firewall rule
configurations. We use the same firewall rule configurations as in Section 6.2.1.
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Figure 6.44: Packet loss during a measurement on the DUT 1 with average firewall
rule matching position of 100

In Figure 6.44 we plot the packet loss of the DUT 1 at an average firewall rule
matching position of 100. We can see directly that the packet loss starts to rise earlier
and rises higher. From our packet loss measurement, we conclude that the packet loss
starts to increase with the overload threshold. Accordingly, we use Equation (6.2)
to determine the start of packet loss.
In order to be able to predict the course of packet loss, it is not only important to

know the start of packet loss, but also how high the packet loss will rise. To define the
packet loss depending on the fire wall rule matching position, we need to determine
the packet loss behavior across multiple firewall rule configurations. Figure 6.45
shows the maximum measured packet loss from the firewall rule measurements.
Every x represents the maximum packet loss which we measure with the corres-
ponding firewall rule configuration. We measure maximum packet losses from 20.83 %
to 89.6 %. We fit a root function to the packet losses that we observe. The
dashed line in Figure 6.45 is our adjusted root function. The adjusted root function
represents the maximum packet loss behavior. Using this root function, we can
determine the maximum packet loss for the configured firewall rule matching position.
With this knowledge we can then model the packet loss behavior.
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Figure 6.45: Maximum packet loss prediction function for the DUT 1

We define our root function in Equation (6.16). We limit the range of values from
0 to less than 1. Because packet loss cannot be less than 0. Furthermore, packet
loss of 1 means that we cannot establish a connection.

m(n) = b · xa + c (6.16)
{m(n) | 0 ≤ m(n) < 1} (6.17)

From the threshold and the maximum packet loss, we determine a quadratic
function that predicts the packet loss. The maximum possible packet loss forms
the apex of the function. We show our function for predicting packet loss in
Equation (6.18). For the low pps range up to the overload threshold g(n) we calculate
a packet loss of 0%. Above the overload threshold, we determine the packet loss using
our quadratic function, which we fit using the maximum packet loss point and the
threshold point. Our quadratic function is only defined in the value range from 0 to
less than 1. The packet loss can never be less than 0 and a packet loss of 1 would
be equivalent to no connection.

p(x) =

{
cx2 + dx+ e x ≥ g(n)

0 x < g(n)
(6.18)

{p(x) | 0 ≤ p(x) < 1} (6.19)
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With the knowledge about the behavior of packet loss, we adjust our prediction
model accordingly. In Figure 6.46, we place our packet loss prediction in the context
of the packet latency measurement on the DUT 1. We show the results from our
latency measurement on the DUT 1 without firewall rules. The dashed curve in
Figure 6.46 is our packet loss prediction. We can observe that our model predicts
packet loss greater than zero only above the overload threshold. The overload area
begins with the packet loss.
We present the real packet loss that we observe in our latency measurement in

Figure 6.43. Our model predicts a similar curve of packet loss as it occurs in reality.
With these adjustments, our model is now also able to predict the packet loss of a
DUT.
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Figure 6.46: Packet loss prediction compared to the basic measurement on the
DUT 1

6.5.7 Automation

To generate a suitable model for the DUT, several measurements are necessary. We
test a large number of combinations to map the behavior of the device. We choose
the measurement configurations in such a way that they represent the latency and
packet loss behavior as well as possible. At the same time, the measurement does not
require too much time. To avoid starting these measurements manually, we write
multiple scripts in the programming language Python that perform the necessary
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measurements. The scripts configure the DUTs and start the measurement. We
define configuring the DUT as generating firewall rules on the device and setting the
correct command line arguments for the packet generator. Depending on the DUT,
the configuration is done via SSH or serial connection.
After all, measurements are done, we use the results to calculate important values

such as standard deviation, mean value, maximum value, and minimum value. We
store the resulting values in a summary csv file. The summary includes the number
of firewall rules that we configure and the packet loss that we observe. We use this
summary for our modeling application to find functions describing the behavior of
the DUT.

6.5.8 Evaluation Scenario

Our goal is to create a model for predicting the latency behavior and packet loss of
firewalls. To test our model for accuracy and robustness, we create an automatic test
scenario. Our automatic test uses values that we did not generate in our profiling
and use them as input for our model. Our model then generates predictions for the
respective input. With the same settings, we measure the latency and packet loss
at our DUT. The difference between the prediction of our model and the actual
measured values determines the accuracy of our model. To keep the measurement
error as small as possible, we repeat the latency and packet loss measurement on
the DUT three times.

6.5.9 Precision

In the previous sections, we report on our measurements and their results. However,
in any measurement, there can be inaccuracies or anomalies. In this section, we
explicitly address the accuracy of our model and our latency measurements.
Since we only test a few firewall configurations in our profiling, we interpolate

between the measurement results. By interpolating, we optimize the time required
for our modeling. However, we increase the measurement error with this procedure.
Every measurement contains a certain degree of measurement inaccuracy. To describe
this in more detail, we show several measurements with the same configuration in
Figure 6.47. Each triangle corresponds to an overload threshold that we measure.
The illustration shows how the results differ, especially in the range of 0 - 100
firewall rules. With 0 firewall rules, one measurement point is at ≈ 633, 000 pps and
two measurement points are at ≈ 580, 000 pps. With 1000 firewall rules, all three
measurement thresholds are within 72, 000 pps and 72, 080 pps.
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Figure 6.47: Multiple threshold measurement of the firewall configuration

We average the results from three measurements to reduce the effects of the
measurement error in our measurements. We then use the mean values for our
further calculation. This ensures that we reduce the measurement error and that
further calculation does not make the error too large.
As already mentioned, we measure not only the latency but also the packet loss.

Like the latency, we write the packet loss in a csv file. Since we do not assign an ID to
each packet, we cannot determine exactly which packets get lost. However, we count
the number of packets we generate and those we analyze. In Figure 5.2, we show
the flow of those packets as orange arrows. The difference between them represents
the packet loss. Inaccuracies can occur with this type of packet loss determination.
The packets that we generate right before the measurement stops might not be
analyzed by the generator because the measurement has already stopped. Another
error occurs due to our warm-up phase. We do not measure the latency or packet
loss during that time, but the generated packets still count to the overall generated
and analyzed packet counter from MoonGen. Some packets that we generate just
before the measurement starts but analyze during the measurement lead to a wrong
number of generated and analyzed packets. We need additional information such as
IDs in the packets to prevent these measurement errors.
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7 Results and Discussion

In this chapter, we present and discuss our results. First, we show the results for
the behavior prediction for different DUTs with our model. We classify our results
and discuss how they correspond to our expectations. Our expectation is a model
that we can apply to various software firewalls. We expect our model to predict the
behavior of different industrial network traffic scenarios. Second, we describe the
application areas of our model and how well it fits. Third, we show the limitations of
our model. Afterward, we discuss the measurement limitations. Finally, we suggest
improvements for iptables.

7.1 Prediction
We test our model to ensure that it is robust and applicable to different software
firewalls. With the help of different network configurations, we can test our model.
Therefore, we train our model with one set of network traffic scenarios.
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Figure 7.1: Verification setup

In the next step, we test our model with a different set of network traffic scenarios.
We show the schematic structure for the verification measurements in Figure 7.1. In
our verification measurement, we test configurations that our model does not already
know through profiling. As described in Section 6.5.4, we specify three groups of
traffic: shorter, medium, and larger frames. For this, we choose as minimum packet
size 64 Bytes, 476 Bytes, and 888 Bytes. For the maximum limits, we choose 200
Bytes, 612 Bytes, and 1522 Bytes. We also define the data rate and the average
firewall rule matching position. We vary the data rate between 123 MBit/s and 975
MBit/s. We measure the behavior at 0 firewall rules and the average firewall rule
matching position at 200. Our verification only contains two rule configurations since
we already test five firewall rule configurations in our profiling in Section 5.6. First,
we test without firewall rules to ensure that our model reflects the base behavior.
The base behavior is the behavior unaffected by firewall rule configurations or other
options. We chose the 200 firewall rule configuration because it does not appear in
our profiling. In addition, we assume, based on our profiling, that 200 firewall rules
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already have an impact on the latency and packet loss behavior of firewalls. If there
are significantly more than 200 firewall rules (e.g., more than 2000 rules), a DUT
may not support this number.
In order to assess the verification predictions of our model, we also measure

the network configurations we provide as input to our model on our DUT. By
comparing the two results, we determine the accuracy of our model. To optimize
our predictions, we apply our optimized latency prediction with additional network
traffic knowledge for each DUT in an example. First, we show the results of our
verification measurement on the EAGLE40 with iptables (DUT 1). Second, we show
the behavior of the EAGLE30 (DUT 2) and how our model represents the behavior.
Finally, we discuss our VPP firewall (DUT 3) model prediction. See Table 5.2, for
a definition of the devices.

7.1.1 EAGLE40 Iptables

We demonstrate the entire implementation detailed in Chapter 6 using the DUT 1.
In this section, we discuss the results of our verification measurement.
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Figure 7.2: Comparison between DUT 1 verification measurement results and
our model prediction functions based on our profiling; Latency in
microseconds; 25 verification measurement results between 15, 537.5 pps
and 794, 135.5 pps; The red points originate from our verification
measurement without firewall rules

Figure 7.2 shows our comparison between the latency of our verification measure-
ment and the latency prediction of our model. For this verification measurement, we
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did not configure any firewall rules. The non-overload area is from 0 to≈ 470, 000 pps
with latencies of less than 100 µs. The overload area starts from ≈ 630, 000 pps
with latencies of more than 450 µs. As we define in Section 6.1.1, the overload area
is where packet loss occurs and latency increases.
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Figure 7.3: Deviation between our packet latency prediction and the actual packet
latency of the DUT 1 in microseconds and percent; We calculate the
deviation from our prediction and the verification measurement without
firewall rules

The comparison shows that our model prediction is close to the actual latency. For
a more detailed comparison of the deviations, we show the deviations in microseconds
in a letter-value plot in Figure 7.3(a) and the deviations in percent in Figure 7.3(b).
The whiskers in Figure 7.3(b) span 1.5 times the IQR from the box. Our model
has an average deviation on all predictions of 4.35 µs or 8.21 % from the latencies
of the verification measurement. The confidence interval with a confidence level of
95 % is between −1.44 µs and 10.15 µs. Thus, the true mean value is in this range
with a probability of 95 %. This means that our model underestimates the latency
by 4.35 µs on average. Our model is, therefore, 8.21 % too optimistic in terms of
latency prediction. The standard deviation for this prediction is 14.49 µs. In the
worst case, our model is 33.28 µs below the real latency.
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Figure 7.4: Comparison between DUT 1 verification measurement results and our
optimized model prediction functions based on our profiling; Latency in
microseconds; 25 verification measurement results between 15, 537.5 pps
and 794, 135.5 pps; The orange and violet points originate from our
verification measurement without firewall rules

After we demonstrated our optimization in Section 6.5.4, we will present the
results here. In Figure 7.4, we compare the results between our optimized latency
prediction and the latencies we measure. We observe that we produce two different
latency predictions. Once the prediction for large packet sizes and once the prediction
for small packet sizes. The two predictions together now cover the latencies we
measured better. We are modeling the optimization to predict the latencies more
accurately and thus better quantify the real-time traffic capability.
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Figure 7.5: Deviation between our optimized packet latency prediction and the
actual packet latency of the DUT 1 in microseconds and percent;
We calculate the deviation from our prediction and the verification
measurement without firewall rules; 25 verification measurement results
between 15, 537.5 pps and 794, 135.5 pps; Top left and right represent
the deviation for small packet sizes; Bottom left and right represent the
deviation for large packet sizes

We show the deviations between our optimized prediction and the measured
latencies in Figure 7.5. The Figure 7.5(a) shows the deviation for small packet
sizes in microseconds. The Figure 7.5(b) shows the deviation for small packet sizes
in percent. The average deviation for small packet sizes is 2.53 µs respectively
5.18 % after our optimization. Our standard deviation, in this case, is 9.19 µs. The
maximum deviation for small packets is 18.39 µs. In Figure 7.5(a) and Figure 7.5(b),
we display the deviations for the large packet sizes. On average, the deviation for
large packet sizes is 3.91 µs respectively 7.52 % after our optimization. The standard
deviation, in this case, is 7.52 µs. The maximum deviation for small packets is
22.88 µs. We thus show that our optimization has lower latency deviations than our
non-optimized prediction. With the optimization, we can more accurately quantify
the real-time capability of the DUT. The latencies of the DUT 1 in the non-overload
area are sufficient for cyclic traffic.
In another verification measurement, we show how our model responds to firewall
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rule configurations. As we previously discussed, we configure the matching firewall
rule at position 200. We aim to show the adaption of our model to a new network
traffic scenario.
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Figure 7.6: Comparison between measurement results and our model prediction;
DUT 1 with 200 firewall rules configured; Latency in microseconds; 25
verification measurement results between 15, 683.5 pps and 794, 006 pps;
The red points originate from our verification measurement with 200
firewall rules

In Figure 7.6, we compare the results between predicted latency and the latency
we measure. At 215, 694 pps and 264, 756.5 pps we notice that the latency prediction
and the measured latency differ significantly. At 221, 756.5 pps our model predicts
62.73 µs, but we measure 1, 165.50 µs. In addition, our model predicts 42.96 µs
at 264, 756.5 pps, but we measure 1, 176.18 µs. These deviations in the overload
area are not relevant for the quality of our model. Our model is intended for the
prediction of devices in an industrial network. In these networks, a device must
never operate in the overload area, otherwise packet loss and extreme latencies will
occur. Therefore, a misinterpretation of the overload threshold is not relevant for
the quality of our model.
We observe that our model predicts the overload area about 50, 000 pps too late.

The non-accurate prediction of the threshold causes the two huge deviations between
latency prediction and measurement. Our model predicts the threshold for DUT 1
with 200 firewall rules at ≈ 260, 000 pps. In our measurement, we observe that the
threshold for DUT 1 with 200 firewall rules already starts at ≈ 210, 000 pps. The
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shifted threshold is due to our threshold prediction function. As previously shown,
in Figure 6.14, our function predicts the threshold at ≈ 260, 000 pps. The deviation
occurs because the curve fit function tries to minimize the distance to all threshold
data points we measure. This results in the deviation of our threshold prediction
function from the values we measure.
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Figure 7.7: Deviation between our packet latency prediction with a firewall
matching position at 200 and the actual packet latency of the DUT
1 in microseconds and percent; We calculate the deviation from our
prediction and the verification measurement with 200 firewall rules

The outliers between our prediction and our measured latency are also visible
in Figure 7.7. We show in Figure 7.7(a) and Figure 7.7(b) how we observe the
deviations in microseconds and percent. Due to the wrong threshold, the mean
deviation of our prediction is 83.95 µs, which corresponds to 184.73 %. The true
mean value is between −39.27 µs and 207.19 µs with a five percent error probability.
Our model tends to predict the latencies too low. In this case, our model can predict
the latencies with an average inaccuracy of 184.73 %. The standard deviation for our
latency prediction with 200 firewall rules is 308.02 µs. In the worst case, our model is
1, 133.21 µs below the real latency. The high standard deviation and the high mean
value result from the incorrect predictions in the transition range between non-
overload and overload area. In Figure 7.7(b), we show that the two outliers deviate
significantly from our other predictions. The reason for the high deviation is that
our model does not determine the threshold correctly. The threshold determination
function in Equation (6.2) can lead to deviations from the real thresholds.
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Figure 7.8: Deviation between our packet latency prediction with a firewall matching
position at 200 and the actual packet latency of the DUT 1 in
microseconds and percent; Only for the non-overload area; We calculate
the deviation from our prediction and the verification measurement with
200 firewall rules

Since we have designed our model for firewalls in industrial networks, we now
consider only the non-overload area since this is the only one that occurs in industrial
networks. In Figure 7.8, we show the deviation only for the non-overload area
between our prediction and the measured latency at 200 firewall rules. We observe
that the latency deviations in Figure 7.8(a) are smaller than in Figure 7.7(a). The
same applies to the percentage deviation in Figure 7.8(b). Looking only at the
prediction results for the non-overload area, our model has an average deviation of
6.99 µs, which corresponds to 12.45 %. The true mean value is between 0.13 µs and
13.85 µs with a five percent error probability. Our standard deviation, in this case,
is 14.43 µs. The maximum deviation is then only 29.61 µs. We show that our model
also accurately predicts the configuration of firewall rules for the non-overload area,
which is essential in our use case.
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Figure 7.9: Comparison between verification measurement results and our model
prediction for DUT 1; Latency in microseconds; Top left 300 firewall
rules; Top right 500 firewall rules; Bottom left 700 firewall rules; Bottom
right 900 firewall rules

In Figure 7.9, we compare four more predictions with measurements for the DUT
1, each with different network settings. Here, we demonstrate that our model
can predict multiple firewall rule configurations. The Figure 7.9(a), shows the
comparison between our latency prediction and the latency we measure with 300
firewall rules. We notice that here, just like in Figure 7.6, our model predicts the
overload range too late at 200, 000 pps. Therefore, our model predicts a few points
between 180, 000 pps and 200, 000 pps with too low latency. The reason for this is,
as in Figure 7.6, the deviation of our threshold function from reality.
The Figure 7.9(b) shows our latency prediction in comparison with the latency we

measure for 500 firewall rules. With 500 firewall rules, there is still a slight deviation
between the predicted threshold and the one we observe in our measurement. But
we notice that the deviation our threshold prediction generates is getting smaller.
The Figure 7.9(c), shows the comparison between our latency prediction and the

latency we measure at 700 firewall rules. In this network scenario, our threshold
prediction is correct. As a result, our model does not produce extremely divergent
latency predictions.
The Figure 7.9(d), compares our latency prediction and the latency we measure
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at 900 firewall rules. In this diagram, we notice that above 300, 000 pps the latency
of our prediction is higher than the latency we measure. This is due to the linear
increase of the prediction function in our model, but the measured latency does not
have the same slope.

7.1.2 EAGLE30 Iptables

In this section, we show our results for the EAGLE30 (DUT 2) and discuss them.
Our goal is to show that our model can be applied to other firewalls as well. First,
we profile the DUT 2 with our profiling steps that we describe in Section 5.6. We
use the results of our profiling to create a model for the DUT 2. In Section 6.5 we
describe the general construction of our model.
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Figure 7.10: Comparison between DUT 2 profiling measurement results and our
model prediction functions based on our profiling; The red points
originate from our profiling measurement without firewall rules

Figure 7.10 shows the resulting model for the DUT 2. The model, in Figure 7.10,
represents the behavior of the DUT 2 without firewall rules. We notice that our
profiling measures a maximum of 70, 000 pps. This is because the DUT 2 has a
maximum data rate of 100 MBit/s on the RJ45 interfaces. We observe that the
DUT 2 behaves similarly to the DUT 1 in Figure 6.37. Just like the DUT 1, the
DUT 2 also has a non-overload area and an overload area. The overload area of
the DUT 2 starts earlier and has a higher latency than the overload area of the
DUT 1. These findings show that iptables firewalls behave similarly. The hardware
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influences the latency of the different iptables firewalls. The better the hardware
performance, the lower the packet latency.
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Figure 7.11: Overload are maximum latency prediction curve and latency we observe
through our profiling for the DUT 2

In terms of firewall dependency, we expect a linear increase in latency with
an increasing number of firewall rules. In Figure 7.11, we show the maximum
packet latencies that we measure with our profiling for the different firewall rule
configurations. We show that the latency behaves as we expect it. The more firewall
rules the DUT 2 has to consider, the higher the packet latency. The latency increases
linearly with the number of firewall rules that we configure, from 15, 559.08 µs at 0
firewall rules to 96, 343.11 µs at 1000 firewall rules. In comparison to the maximum
latency prediction function in Figure 6.16, we observe that the latency of the DUT
2 is consistently higher than the DUT 1 latency.
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Figure 7.12: Non-overload area latency prediction curve and latency we observe
through our profiling for the DUT 2

For the non-overload area of the DUT 2, we observe similar behavior in comparison
to the DUT 1. In Figure 7.12, we show the mean latency of the non-overload area for
different firewall configurations. Again, the basic latency increases with the number
of firewall rules. We measure 481.72 µs with 0 firewall rules and 7765.64 µs with
1000 firewall rules.
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Figure 7.13: Comparison between DUT 2 latency behavior with 100 firewall rules
and our DUT 2 model latency behavior prediction functions for
100 firewall rules; The brown points originate from our profiling
measurement with 100 firewall rules

A feature of our model is the prediction of the latency with different firewall
configurations. To verify this, we use our model to generate a latency prediction
for 100 firewall rules on the DUT 2. We show the latency comparison between our
latency prediction and our latency measurement in Figure 7.13. We detect the non-
overload area from 0 pps to 10, 000 pps and the overload area above 10, 000 pps.
Using our maximum latency prediction from Figure 7.11, we can determine the
latency offset for the overload area. Our model adjusts the prediction functions
accordingly. With this method, our model can predict the behavior of different
firewall rule configurations. With a configuration of 100 firewall rules, our model
has an average deviation of 76.17 µs. In this case, our model tends to under-predict
the latency. The standard deviation is 442.84 µs. The high deviation comes from
the fact that the latencies of the DUT 2 are very high in absolute terms. Small
percentage deviations already lead to high latency deviations. If we keep this in
mind, our model represents the behavior of the DUT 2 well. The DUT 2 with 100
firewall rules is only suitable for industrial networks up to ≈ 10, 000 pps. Above
≈ 10, 000 pps, packet loss occurs and the latencies are too high for cyclic traffic.

105



7 Results and Discussion

0 20,000 40,000 60,000 80,000
Packets per second (pps)

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

La
te

nc
y 

in
 m

icr
os

ec
on

ds
 (

s)

Reality
Prediction

Figure 7.14: Comparison between DUT 2 verification measurement results without
firewall rules and our model prediction functions; Latency in
microseconds; The red points originate from our verification
measurement without firewall rules

In Section 6.5.8, we discuss how to verify our model to determine its accuracy
and robustness. Accordingly, we generate a verification measurement to test our
DUTs. Here, we discuss the results from the verification of our model for the DUT
2. In Figure 7.14, we compare the latency prediction of our model and the latencies
we measure with 0 firewall rules in our verification measurement. In comparison,
Figure 7.10 shows the measurement results from our profiling compared with the
model prediction. To verify our DUT 2 model, we measures 55 pps values between
127.5 pps and 83, 724 pps. We observe that our prediction works very well, especially
in the overload area. Due to the curve fitting of our model and the latency behavior
of the DUT 2, there are some pps values where our latency prediction deviates more
significantly from reality.
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Figure 7.15: Deviation between our packet latency prediction and the actual packet
latency of the DUT 2 in microseconds and percent; We calculate the
deviation from our prediction and the verification measurement without
firewall rules

To better illustrate the deviation between the latency prediction of our model and
the actual latency, we draw Figure 7.15(a). Our mean deviation, in this case, is
−136.10 µs. With an error probability of five percent, the true mean value lies
between −252.62 µs and −19.59 µs. This means that, on average, we predict
the latency to be 136.10 µs too large. We show the percentage deviations in
Figure 7.15(b). If we look at this deviation in percentage terms, our prediction is, on
average, 0.38 % higher than the real latency. The standard deviation is 436.85 µs.
The high standard deviation is due to the fact that the latencies of the DUT 2 are
generally very high and small deviations in percentage terms result in a large latency
in absolute terms. We demonstrate that our model can predict the latencies well
without much effort. Our model shows that the DUT 2 could only handle a small
number of pps in an industrial network since packet loss and high latency already
occur at ≈ 17, 000 pps.
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Figure 7.16: Comparison between DUT 2 optimized profiling measurement results
and our model prediction in microseconds; Latency in microseconds;
The orange and violet points originate from our verification
measurement without firewall rules

In Figure 7.16, we consider the result of our optimized prediction for large and
small packet sizes. We see that the two functions predict the appropriate latencies for
the respective packet sizes. This improves the deviation of our latency prediction.
The average deviation for small packets is now −91.36 µs and for large packets
−226.03 µs. The high deviation for large packets is due to the fact that the curve
fit function also tries to find the smallest distance to the two points at 12, 500 pps
and 14, 400 pps.
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Figure 7.17: Deviation between our optimized packet latency prediction and the
actual packet latency of the DUT 2 in microseconds and percent;
We calculate the deviation from our prediction and the verification
measurement without firewall rules; Top left and right represent the
deviation for small packet sizes; Bottom left and right represent the
deviation for large packet sizes

In Figure 7.17, we show the latency deviations from the optimized prediction.
Through optimization, we achieve an average deviation of −91.36 µs or 55.31 % for
small packets and −226.03 µs or −5.76 % for large packets. Due to the high latencies
compared to the DUT 1, the optimization produces a too low latency prediction for
small packets in the range between 2, 000 pps and 8, 000 pps. The low latency
prediction results in a high percentage deviation. The curve fitting calculates the
smallest deviation between all profiling data points and the fitted function. Since
the latencies in the non-overload range of DUT 2 already vary between 100 µs and
4, 000 µs, the curve fitting has to compromise. With the DUT 2, our optimization
does not offer any improvement. Even large packets lead to overload and therefore
our curve fitting has to make a trade-off. These extremely high latencies at already
low pps are not applicable in a performance-optimized industrial network. Therefore,
our optimization for the DUT 2 is good because it shows that even large packets
lead to overload early on.
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Figure 7.18: Comparison between DUT 2 (200 firewall rules) profiling measurement
results and our model prediction in microseconds; Latency in
microseconds; The red points originate from our verification
measurement with 200 firewall rules

Figure 7.18 shows the latency we measure with our verification measurement on
the DUT 2 and the latencies our model predicts for this scenario. In comparison
to Figure 7.6, we observe that our model predicts the threshold more accurately
for the DUT 2. However, the latency prediction differs especially in the overload
area from the real latency. In industrial networks, firewalls are not operated in the
overload area, as this would negatively affect the network performance. Therefore,
the deviations in the overload area are not relevant for the quality of our model. Our
deviation comes from the lower slope of the overload prediction function. The real
latencies increase even more after the threshold. The function that our profiling
generates has a lower slope, because the latencies we measured in the profiling
do not show such a sharp increase in latency in the overload range. If we would
generate an additional higher latency offset in our model, our prediction would be
more conservative and in this case also closer to the measurement results. However,
the additional latency offset would cause us to predict too high latencies in other
network scenarios.
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Figure 7.19: Deviation between our packet latency prediction with a firewall
matching position at 200 and the actual packet latency of an DUT
2 in microseconds and percent; We calculate the deviation from our
prediction and the verification measurement with 200 firewall rules

Figure 7.19 presents the deviations in microseconds (Figure 7.19(a)) and percent
(Figure 7.19(b)). The average deviation is 1, 728.1 µs or 154.56 %. With an
error probability of five percent, the actual mean value is between 1, 338.33 µs
and 2, 118.02 µs. In Figure 7.19(a), we observe that most deviations are below
2, 000 µs. In this network scenario, the latency deviations below 10, 000 pps are
mainly responsible for the high average deviation of 154.56 %. The largest deviation
that our model shows occurs in the threshold range and amounts to 6, 207.89 µs.
In the overload area, we predict latencies too low, although they are significantly
higher in our measurement. This is because we calculate through our profiling a
lower slope in the overload area than we measure for 200 firewall rules.
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Figure 7.20: Deviation between our packet latency prediction with a firewall
matching position at 200 and the actual packet latency of an DUT 2
in microseconds and percent; Only non-overload area; We calculate the
deviation from our prediction and the verification measurement with
200 firewall rules
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If we now consider only the non-overload range, we observe the deviations in
Figure 7.20. The average deviation is now 89.77 µs or 82.45 %. With an error
probability of five percent, the actual mean value is between 63.68 µs and 115.87 µs.
The largest deviation, in this case, is 262.56 µs. We reduce the standard deviation
to 49.81 µs. We thus show that we make better predictions in the non-overload
range than over the entire pps range. It is precisely the non-overload area where our
prediction should be more accurate, as this area is essential for industrial network
suitability.
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Figure 7.21: Packet loss determination for the DUT 2

So far, we determine the behavior of the latency with our model. In Section 6.5.6
we describe that our model can represent the packet loss as well. In Figure 7.21 we
show that the maximum packet loss behaves as we describe in Section 6.5.6. From
the root function shown in Figure 7.21, we calculate the vertex of our packet loss
function for the DUT 2. With the knowledge of the threshold and the vertex, we
calculate our packet loss curve in Figure 7.22.
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Figure 7.22: Comparison of our packet loss prediction and real packet loss for
the DUT 2; The red points originate from our profiling measurement
without firewall rules

With the DUT 2, we check how far the packet loss influences the overload area.
We compare the real packet loss and our packet loss prediction in Figure 7.22.
In comparison to the packet loss, we show the latencies we observe. Figure 7.22
shows that the overload area of the DUT 2 relates to the packet loss. The packet
loss behavior of the DUT 2 is similar to the DUT 1 packet loss behavior. Our
model accurately predicts the start of packet loss, which is essential for quantifying
industrial network capability.

7.1.3 Vector Packet Processing (VPP)

In the previous sections, we applied our model to iptables software firewalls. In
this section, we apply our model to the VPP software firewall. VPP „[...] is a
modularized and extensible software framework for building bespoke network data
plane applications.“ [49] Accordingly, there are different implementations that we
test. First, we test how our model maps the behavior of VPP with single-core
settings. Then, we test our model on VPP with multi-core settings.

7.1.3.1 VPP Single-Core

VPP with single-core settings enables the packet processing on a single CPU core.
We dedicate this section to profile the behavior of the VPP firewall with the single-
core setting.
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Figure 7.23: Comparison between VPP single-core verification measurement results
and our model prediction functions based on our profiling; The red
points originate from our profiling measurement without firewall rules

In Figure 7.23, we show the profiling result of how our model predicts the behavior
of VPP without ACL rules. Although VPP does not behave in a typical overload
manner like iptables firewalls, our model uses both the overload and non-overload
prediction functions. The reason for this are the large latency deviations between
100, 000 pps and 300, 000 pps. Our model interprets these deviations as an overload
threshold. In the single core setting without ACL rules, most of the latencies we
measured are in the range of less than 50 µs. Compared to the profiling of DUT 1 in
Section 7.1.1 and DUT 2 in Section 7.1.2, the VPP firewall does not exhibit overload
behavior without ACL rules. VPP can process up to 256 packets simultaneously
using vectorized packet processing. The vectorized packet processing is why the
VPP firewall does not get directly into the overload area.
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Figure 7.24: Overload area maximum latency prediction curve and maximum latency
we observe through our profiling for VPP single-core on the DUT 3

VPP is able to avoid the overload behavior to a certain degree. We show in
Figure 7.24 how the maximum latencies behave in comparison to the number of
ACL rules. In Figure 7.24, we observe that the maximum latency in the overload
area does not change for 0, 50, and 100 ACL rules. This shows that VPP can delay
the overload. Our model does not expect the latency to remain constant despite
the firewall rule change. This leads to a situation where our model would predict
negative latency by curve fitting up to 50 firewall rules. But this is not possible, so
instead of negative latency, we predict no latency offset. Above 100 ACL rules we
observe the linear increase of the latency. This shows that the VPP firewall, once it
reaches the overload area, behaves similarly to iptables.
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Figure 7.25: Non-overload area latency prediction curve and latency we observe
through our profiling for VPP single-core on the DUT 3

For the non-overload area of the VPP firewall, we obtain a similar picture. In
Figure 7.25, we show the latency curve of the non-overload range of the VPP firewall.
The latency changes only slightly up to 100 ACL rules, after this point the latency
increases more significantly.
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Figure 7.26: Comparison between VPP single-core latency behavior with 100 ACL
rules and our VPP model latency behavior prediction for 100 ACL rules;
The brown points originate from our profiling measurement with 100
firewall rules

In Figure 7.26, we show the behavior of the VPP firewall in comparison to our
model with 100 ACL rules. We observe that our model predicts an overload area,
but in reality, there is none. VPP can delay the overload area with its vectorized
packet processing. Our maximum latency prediction function in Figure 7.24 and
threshold prediction function obtain a deviation from the values we measured due
to the non-linearity of the overload behavior of VPP. This deviation results in
an prediction of an overload area below 100 ACL rules and a corresponding latency
offset for the overload area. VPP can process up to 100 ACL rules traffic with almost
no packet loss, thus it keeps the latency low. For the modeling in Figure 7.26, we
achieve a mean deviation of −51.96 µs. This means that we tend to over-predict
the latency because our model is more conservative. The standard deviation for this
measurement is 154.89 µs. The maximum deviation occurs at about 150, 000 pps
and is 510.24 µs. The high standard deviation results from the wrong assumption
that the VPP firewall has an overload behavior already at 100 ACL rules. In the
overload are in Figure 7.26, where most large deviations occur, our model is too
pessimistic. The latency over-prediction would lead to performance losses compared
to the values we measured. However, this is not as bad as packets arriving too late,
this happens when users work with a latency prediction that is too low, but packets
actually experience significantly higher latency.
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Figure 7.27: Comparison between VPP single-core latency measurement results and
our model prediction functions based on our verification measurement;
Latency in microseconds; The red points originate from our verification
measurement without firewall rules

To verify our results, we generate additional data with our verification measure-
ment that we did not test in our profiling. We use the same network settings as
input for our model and compare our prediction with the real measured values. In
Figure 7.27, we compare the two latency results. In the range below 200, 000 pps, the
spread of the latencies is small and our model can predict the latencies with small
deviations. With increasing spread, the deviation of our model becomes larger.
We illustrate the deviation between our prediction and our measured latency

in Figure 7.28. Figure 7.28(a) shows the absolute deviation and Figure 7.28(b)
shows the percentage deviation. The average latency deviation is −2.41 µs or
−6.99 %. With an error probability of five percent, the true mean value lies within
the confidence interval of −7.40 µs to 2.58 µs. The maximum deviation between
our prediction and the real measured latency is 37.29 µs. In this case, at about
330, 000 pps, our model predicts the latency too low. The standard deviation in this
case is 12.47 µs.
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Figure 7.28: Deviation between our packet latency prediction with a firewall
matching position at 1 and the actual packet latency of VPP single-
core in microseconds and percent; We calculate the deviation from our
prediction and the verification measurement without firewall rules
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Figure 7.29: Comparison between VPP single-core without firewall rules configured:
measurement results and our optimized model prediction functions
based on our profiling; Latency in microseconds; The orange and violet
points originate from our verification measurement without firewall
rules

119



7 Results and Discussion

In Figure 7.29, we now consider the influence of our optimization on the prediction
of the VPP single-core latency behavior. The average latency deviation for small
packets with our optimization is −0.72 µs or −0.97 %. With our optimization, the
average latency deviation for large packets is −6.85 µs or −2.81 %. Compared to
Figure 7.27, we reduced the deviations. We show the deviations for the individual
packet size groups in Figure 7.30. The standard deviation for small packets is now
12.87 µs and 19.75 µs for large packets. The maximum deviation is 58.41 µs.
Through our optimization, we can predict the VPP with single-core settings even
more accurate. This optimization helps us to make a more precise decision on the
selection of VPP firewalls in industrial networks.
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Figure 7.30: Deviation between our optimized packet latency prediction and the
actual packet latency of the DUT 3 with single-core settings in
microseconds and percent; We calculate the deviation from our
prediction and the verification measurement without firewall rules; Top
left and right represent the deviation for small packet sizes; Bottom left
and right represent the deviation for large packet sizes
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Figure 7.31: Comparison between VPP single-core with 200 firewall rules configured:
measurement results and our model prediction functions based on our
profiling; Latency in microseconds; The red points originate from our
verification measurement with 200 firewall rules

In another verification measurement, we investigate how accurately our model
predicts the behavior of the VPP firewall with the appropriate ACL rule at position
200. We compare the result in Figure 7.31. In this verification measurement we
observe that the VPP firewall reaches the overload range at around 620, 000 pps.
Since our threshold prediction is based on the entire profiling history, our model
cannot accurately determine the start of the overload behavior and tends to predict
the threshold too early. In Figure 7.32, we present the deviation between our latency
prediction and the latency we measured. The mean deviation of our prediction is
−141.16 µs or 26.25 %. With an error probability of five percent, the true mean
value lies within the confidence interval of −318.13 µs to 35.81 µs. Our model
therefore tends to over-predict the latencies by 141.16 µs. The maximum deviation
is 1151.92 µs. This is due to the incorrect threshold prediction. As a result, our
model predicts some latencies significantly too high. The standard deviation is
therefore 442.34 µs. However, the users would never want to achieve this overload
in an industrial network, so these deviations are not relevant for the quality of our
model. If we now consider only the non-overload area, our average deviation is
−183.10 µs respectively 26.02 %. The early overload prediction leads to our model
estimating the latencies too pessimistically.
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Figure 7.32: Deviation between our packet latency prediction with a firewall
matching position at 200 and the actual packet latency of VPP single-
core in microseconds and percent; We calculate the deviation from our
prediction and the verification measurement with 200 firewall rules

We show with our measurement results that the VPP firewall with single-core
settings does not behave like an iptables firewall. With less than 100 ACL rules VPP
can avoid its overload behavior. Above 100 ACL rules, the behavior becomes similar
to that of an iptables firewall. Our model has difficulties in correctly predicting the
behavior of the firewall, especially in the range below 100 ACL rules. This is due to
the fact that our threshold prediction does not handle the constant behavior up to
100 ACL rules. Our model quantifies the industrial network capability of VPP and
shows that VPP is able to meet the latency for cyclic traffic.
We show our prediction curve for the maximum packet loss of an VPP firewall

with single-core setting in Figure 7.33. By fitting the root function to our measured
packet loss, our function would predict a negative packet loss in the range below
50 ACL rules. This is not possible, so we predict 0 % packet loss for this range.
In Figure 7.34, we compare the packet loss from our profiling and our packet loss
prediction. We observe that packet loss occurs not as we expect it. On the one hand,
the packet loss is very low at a maximum of 0.34 %, and on the other hand, the
packet loss does not increase constantly. With this low packet loss, we can recognize
every little outlier. The reason for this low packet loss is the way VPP processes
the packets in single-core mode. In Figure 7.46, we show that VPP with multi-core
settings generates less packet loss. Due to the processing of the packets on one CPU
core only, there is a small amount of packet loss. Above 100 ACL rules, VPP reaches
the overload range and thus the packet loss increases. Figure 7.33 illustrates that
the packet loss above 100 ACL rules is similar to that of iptables firewalls.
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Figure 7.33: Packet loss function and measured packet loss from our profiling for
VPP single-core on the DUT 3
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Figure 7.34: Comparison of our packet loss prediction and the packet loss we
measured for VPP single-core on the DUT 3; The red points originate
from our profiling measurement without firewall rules
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7.1.3.2 VPP Multi-Core

VPP with multi-core settings enables the simultaneous processing of several packets
on several CPU cores. With these settings, we profile the VPP firewall and use the
results to create our model. In Figure 7.35, we show how our model represents the
behavior of the VPP firewall. VPP does not show any noticeable overload behavior
in comparison to the iptables firewalls. Due to the vectorized processing of up to
256 packets simultaneously, VPP prevents the overload area. The overall spread of
the latencies across the entire measurement range is only 10.5 µs. Especially in the
range below 100, 000 pps, we measure a concentration of latency measurements at
approximately 14 µs. Our model does not interpret the minor latency variations as
overload behavior. Therefore, our model uses only the non-overload function for the
latency prediction without firewall rules.
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Figure 7.35: Comparison between VPP multi-core verification measurement results
and our model prediction functions based on our profiling; The red
points originate from our profiling measurement without firewall rules
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Figure 7.36: Overload area maximum latency prediction curve and latency we
observe through our profiling for VPP multi-core on the DUT 3

The result for determining the latency in the overload range, in Figure 7.36 shows
that the VPP firewall does not behave precisely the same way as iptables firewalls.
The latency we measure on the VPP firewall stays nearly the same until we configure
100 ACL rules. As in the single core variant in Figure 7.24, our model would predict
a negative latency offset up to 50 firewall rules. This is unrealistic, so our model
does not predict a latency offset in this range. As we configure more than 100 ACL
rules, the latency increases linearly like the iptables firewalls. Our model assumes a
linear increase in latency. Hence, it cannot accurately represent the latency for less
than 100 ACL rules.
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Figure 7.37: Non-overload area latency prediction curve and latency we observe
through our profiling for VPP multi-core on the DUT 3

Since theVPP firewall has no overload area below 100 ACL rules, our model tries
to map this. Figure 7.37 shows that the latency also increases in the non-overload
area with increasing number of ACL rules. But just like the determination of the
overload range, the latency hardly changes with less than 100 configured ACL rules.
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Figure 7.38: Comparison between VPP multi-core latency behavior with 100 ACL
rules and our VPP model latency behavior prediction for 100 ACL rules;
The brown points originate from our profiling measurement with 100
firewall rules

We show the latency prediction of our VPP model with 100 ACL rules configured
in Figure 7.38. We observe that our model predicts an overload area, but in reality,
the overload does not occur. The reason for the incorrect overload prediction is
the same as in Figure 7.26. Our threshold prediction function predicts an increasing
packet latency as a sign of overload behavior. This leads to the incorrect assumption
that the VPP firewall is entering its overload area. Instead, the VPP firewall packet
latency remains at less than 50 µs. The latency prediction of our model does not
recognize that the VPP firewall has, in this case, no overload area. Therefore,
our prediction in the range above 580, 000 pps is too high. In the range below
580, 000 pps, our model represents the behavior more realistically.
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Figure 7.39: Comparison between VPP multi-core latency measurement results and
our model prediction functions based on our verification measurement;
Latency in microseconds; The red points originate from our verification
measurement without firewall rules

We consider the deviations between the prediction and the real measurement in
our verification measurement, in Figure 7.39. As for each model, we perform our
verification measurement. We compare the packet loss that our model predicts
with the packet loss we measure with the same input parameters. In Figure 7.39,
we compare our latency prediction with the latencies we measure with our VPP
firewall. In the range below 100, 000 pps, we can observe that the packet latencies of
the VPP firewall have a variation of less than 4 µs. In this range, our model predicts
the latencies closer to the actual latencies that we measure. Above 100, 000 pps, the
latency variance we measure increases.
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Figure 7.40: Deviation between our packet latency prediction and the actual packet
latency of VPP multi-core in microseconds and percent; We calculate
the deviation from our prediction and the verification measurement
without firewall rules

Figure 7.40(a) shows the deviations between our latency measurement results and
our latency prediction in microseconds. The average deviation in our verification
test is 0.01 µs. With an error probability of five percent, the actual mean value is
between −0.97 µs and 0.98 µs. On average, this means that our model predicts the
latency 0.01 µs too low. The small deviation is because the VPP firewall generally
generates very low packet latencies and has a low spread. If we look at the deviations
on a percentage basis in Figure 7.40(b), we see that they are still lower than those
of Figure 7.15(b). On average, our model for the VPP firewall predicts packet
latencies to be 0.05 % lower than we measure. For the worst case in our verification
measurement, our model predicts the latency to be 5.9 µs higher than we measure
in reality. The standard deviation for our latency prediction is in this case 2.45 µs.
Due to the general low packet latency of the VPP firewall, the deviation between

the latency prediction of our model and the latency we measure is quite small.
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Figure 7.41: Comparison between VPP multi-core latency measurement results and
our optimized model prediction functions based on our verification
measurement; Latency in microseconds; The orange and violet points
originate from our verification measurement without firewall rules

In our optimized prediction, we are now able to consider the packet sizes in a more
differentiated way. In Figure 7.41, we compare the predictions for large and small
packets with the latencies we measured without ACL rules. We note that the black
pluses can also predict the higher packet latencies at 200, 000 pps, since they take
into account the large packet sizes. The average latency deviation for small packets
is 0.12 µs or 0.82 %. For large packets, we measure an average latency deviation of
−0.02 µs or −0.22 %. Compared to Figure 7.39, we increase the accuracy of our
model with our optimization. The optimization allows us to quantify the real-time
capability more accurately.
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Figure 7.42: Deviation between our optimized packet latency prediction and the
actual packet latency of the DUT 3 with multi-core settings in
microseconds and percent; We calculate the deviation from our
optimized prediction and the verification measurement without firewall
rules; Top left and right represent the deviation for small packet sizes;
Bottom left and right represent the deviation for large packet sizes

In Figure 7.42, we show the latency deviations for our optimized VPP multi-core
prediction without firewall rules. We present the deviation for small packets in
microseconds (Figure 7.42(a)) and in percent (Figure 7.42(b)). We illustrate the
corresponding deviation for large packets in microseconds (Figure 7.42(c)) and in
percent (Figure 7.42(d)). The maximum deviation for small packets is 6.25 µs and
for large packets 1.44 µs. The standard deviation is 2.9 µs for small packets and
0.73 µs for large packets. We conclude that, in this case, we significantly improve
the prediction for large packets and thus increase the overall prediction accuracy.
VPP with multi-core settings meets in our verification measurement without firewall
rules the latency, jitter, and packet loss requirements of cyclic traffic.
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Figure 7.43: Comparison between VPP multi-core with 200 firewall rules configured:
measurement results and our model prediction functions based on our
profiling; Latency in microseconds; The red points originate from our
verification measurement with 200 firewall rules

Our verification measurement with the matching firewall rule at position 200
produces the result shown in Figure 7.43. We observe that latency increases rapidly
starting at about 620, 000 pps. Since our model does not predict the overload
threshold for VPP accurately, our model does not correctly determine these latencies.
In an industrial network, we have to exclude the overload range, so the deviation of
our model in this range has no relevance for the quality of our model.
In Figure 7.44, we show the absolut deviation (Figure 7.44(a)) and the percentual

deviation (Figure 7.44(b)). We observe in Figure 7.44(a) that view predictions have
a large deviation of more than 300 µs. Most of the deviations are around 0 µs. In
Figure 7.44(b), we observe there are three outliers, although, in Figure 7.43, only
two points are in the overload area. The three percentage outliers come from the
points next to the threshold. This is because our curve fit function adjusts the
quadratic function in the non overload area to have the smallest distances to all
points. Therefore, these three percentage outliers result from the compromise of the
curve fit function. Our mean deviation is 33.37 µs for the prediction in Figure 7.43.
The average percentage deviation is thus 30.63 %. In this network configuration, our
model tends to predict the latencies too low. The standard deviation is 96.98 µs. The
largest deviation between our prediction and our measured latency is 380.47 µs. The
high standard deviation is due to our predictions in the overload area. The largest
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outlier in percentage terms occurs at approx. 460, 000 pps. Our prediction in this
case is 16 µs, but in reality we measure 38 µs.
If we now consider only the non-overload area, our average deviation is 4.8 µs

and the standard deviation is 5.68 µs. This shows that our model predicts smaller
deviations in the non-overload area. Our model is therefore able to quantify the
behavior of the VPP firewall with multi-core settings in industrial networks.
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Figure 7.44: Deviation between our packet latency prediction with a firewall
matching position at 200 and the actual packet latency of VPP multi-
core in microseconds and percent; We calculate the deviation from our
prediction and the verification measurement with 200 firewall rules
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Figure 7.45: Packet loss function and measured packet loss from our profiling for
VPP multi-core on the DUT 3
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Part of our model is the prediction of packet loss. We show our prediction curve
for the maximum packet loss of DUT 3 with multi-core setting in Figure 7.45. Below
100 ACL rules, we observe that the packet loss is ≈ 0 %. Above 100 ACL rules the
packet loss rises til 83 %. VPP achieves the 0 % packet loss up til 100 ACL rules
through vector processing. The vector processing delays packet loss and thus the
overload area. By fitting the root function to our measured packet loss, our function
would predict a negative packet loss in the range below 50 ACL rules. This is not
possible, so we predict 0 % packet loss for this range. Above 100 ACL rules, VPP
reaches the overload range, and thus the packet loss increases. Figure 7.45 illustrates
that the packet loss above 100 ACL rules is similar to that of iptables firewalls.
Since the VPP firewall has no overload area below 100 ACL rules, we assume that

packet loss must be low in this area. In Figure 7.46, we compare the packet loss from
our profiling with 0 firewall rules (red points) and our packet loss prediction (brown
dashed line) for this network traffic scenario. The black dashed line represents the
actual packet loss we measure at 0 firewall rules. We observe that a packet loss of
0.01 % occurs for only one measurement point. The reason for low packet loss, in
this case, is the measurement inaccuracy in our measurement setup. We determine
packet loss by taking the difference between the packets transmitted and the packets
received, there may be some inaccuracies. Packets, we generate at the end of the
recording and do not receive before the end of the recording count as packet loss
even though they are not lost from the DUT. Since VPP with multi-core settings
uses several cores for traffic processing, there are no outliers in packet loss as with
the single core settings.
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Figure 7.46: Comparison of our packet loss prediction and the packet loss we
measured for VPP multi-core on our DUT 3; The red points originate
from our profiling measurement without firewall rules
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7.2 Applicability
Our model has different functions as we show in Chapter 6. Therefore, we use our
model in different applications. In this section, we describe the different application
scenarios and the benefits of our model. First, we discuss the applicability to different
firewalls. We describe why our model can also predict the behavior of other firewalls.
Second, we evaluate the duration of our profiling. Finally, we describe how our model
can support the selection of network devices.

7.2.1 Applicability to other Firewalls

In Section 7.1, we demonstrate that the behavior of iptables is similar, and the
behavior differs by the chosen hardware. Iptables implementations generally have
similar behavior. The implementation details differ between kernel versions. Our
model can predict the non-overload and overload behavior of iptables firewalls.
The prediction works hardware independently. Our results show that our model
is suitable for iptables firewalls. We discuss the results of DUT 1 in Section 7.1.1.
For the DUT 1 without firewall rules, we can use our optimized model to accurately
determine the latency of the small packets with a deviation of 5.18 % and the
large packets with 7.52 %. With a maximum deviation of 22.88 µs in the behavior
prediction of DUT 1, our model is precise enough for cyclic and acyclic traffic in
TSN. Our model provides an accurate prediction to decide during the industrial
network planning phase whether the DUT 1 is suitable or not.
In Section 7.1.2, we discuss our model prediction for the DUT 2 without firewall

rules. Our optimized model predicts, on average, 91.36 µs or 55.31 % for small
packets and 226.03 µs or 5.76 % for large packets higher latencies than we measure
with the DUT 2. In an industrial network, packet loss is not allowed. If we predict
too low latencies, packet loss can occur for time-critical data because the application
does not wait forever to receive the data. Therefore, our latency predictions are more
conservative. In addition, we recognize from our optimized model that even large
packets cause overload in the DUT 2. The deviations with−91.36 µs and−226.03 µs
are more significant than the deviations of the DUT 1. The reason for the higher
deviation is that the latencies generated by the DUT 2 increase significantly with a
slight increase in traffic. Between 8, 000 pps and 13, 000 pps, the latency increases
from 200 µs to over 3, 000 µs. For the DUT 2, our prediction is not as accurate as for
other DUTs but can also be used to assist in the network planning phase for device
selection. Our deviations are still in a range that is sufficient for the prediction of
cyclic TSN traffic up to 20 ms.
However, since the DUT 2 already has latencies of over 30 ms at 200 firewall

rules, the DUT 2 is not sufficient for cyclic TSN traffic above 6, 000 pps. A more
specific subdivision of the packet sizes is helpful to obtain a more accurate prediction
for performance-weak devices. We did not take a closer look at an even more fine-
grained subdivision of packet sizes in our optimization. Since the DUT 2 enters the
overload area early, it can only be used in low-performance industrial networks.
In the case of VPP, our model is accurate in its prediction for both the single-core

and multi-core variants, see Section 7.1.3. With single core settings, our prediction
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is, on average, 0.72 µs or 0.97 % for small packets and 6.85 µs or 2.81 % for large
packets above the measured latency. With multi-core settings, our model is even
more accurate. The deviation here is 0.12 µs respectively 0.82 % for small packets
and 0.02 µs respectively 0.22 % for large packets. We demonstrate that our model
can predict the behavior of VPP firewalls accurately for industrial networks. The
accuracy of our model is sufficient for cyclic and acyclic traffic in TSN.
We cannot test all possible software firewalls within the scope of this work. Thus,

it is impossible to make a precise statement about the overall accuracy of our model.
Apart from that, our profiling allows us to examine the behavior of a firewall with
a few rules as well as with 1000 rules. Some firewalls, such as EAGLE30, allow a
maximum of 2048 firewall rules. We can map the behavior of such iptables firewalls
with our model as shown in Section 7.1. Further, we can give a general overview of
the latency and packet loss behavior of software firewalls. This allows us to predict
how a network device will behave at network creation time. A user can then make a
decision, based on our prediction, about the use of firewalls in their industry network.

7.2.2 Profiling Duration

Another requirement for our model is the time it takes to create it. If the creation
takes too long, the costs for generating the model will be too high. Thus, the
benefit of the modeling will be smaller. A too short generation time can lead to
the model becoming too inaccurate and therefore unusable. With our profiling, we
have found a good trade-off for these problems. We describe the detailed profiling
steps in Section 5.6. With our comparison between different firewall configurations
in Section 6.2.1, we demonstrate that with our profiling, we have a deviation of
6.25 % between our customized threshold function and the actual thresholds. With
more firewall configurations, our custom threshold function does not become more
accurate. Our deviation from the measured thresholds increases to 7.66 % with
four additional firewall rule configurations. In addition to the higher deviation, the
profiling time increases by 80 % with the four additional firewall configurations. Our
profiling offers the best compromise between profiling duration and accuracy.

7.2.3 Network Device Selection

In the previous Chapter 6 and Chapter 7, we describe how to construct our model
and what results it delivers in terms of predicting the behavior of different software
firewalls. In this section, we describe the applications where our model is useful.
Packet loss is not tolerated in industrial networks. With Profinet, for example, a

maximum network load of 20 % with cyclic traffic is permitted. This is for safety
reasons so that acyclic traffic does not lead to a loss of quality due to jitter. With
our prediction, a lower utilization buffer can be used since our model can predict
at what point a quality loss occurs due to packet loss. Our model can help, for
example, with the selection of network devices. Within two hours, the profiling
allows to build a model for the respective firewall. The model can predict the
latency and packet loss for the respective firewall at given network and firewall
configuration. These two factors are essential for the selection of industrial network
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devices during network planning. There are additional requirements on the latency
and jitter behavior besides the not allowed packet loss so that real-time critical
traffic is possible. We demonstrate that with our optimized latency prediction, the
latency can be predicted accurately enough for cyclic traffic. For example, if users
have a specific latency requirement of 1 ms on their traffic, the model determines
what firewall will meet this latency requirement up to a particular traffic volume.
The user determines with our model the latency for a given pps value. We add
the maximum deviation to our prediction. The result is the maximum latency the
firewall is likely to have with this pps value. Based on the maximum latency, the
user can now decide whether the firewall meets his requirements or not.
As we show in Figure 6.10, the jitter depends on the network situation and the

cross traffic. Since the software firewalls are very jitter-prone, our model cannot
predict their exact jitter behavior.
As we describe in Section 5.5.2, different applications have different tolerance

levels to packet loss. Our model makes it possible to determine the behavior of
the network devices before creating the network. Using our model, we can predict
the behavior of the DUT under typical network traffic. By network typical traffic,
we mean changing packet sizes and data rates. The results determine our network
device selection. This way, we can match a selection of devices to the prevailing
network traffic even before we set up the network. Our model thus saves money and
valuable time during the setup of networks.

7.3 Model Limitations
There are countless different types of firewalls from various manufacturers. Different
combinations of hardware and software firewalls are available. For example, there are
Next-Generation Firewalls (NGFWs), application level gateways, stateful inspection
firewalls, circuit level gateways, and packet filtering firewalls. We cannot examine
all firewalls. Instead, we cover firewalls that allow stateful packet inspection and
packet filtering. In our investigation of these firewalls, we were able to identify
several points that are difficult to predict for our model. For example, interrupts
on CPU cores can occur at any time. We cannot predict the occurrence of such
interrupts. Nevertheless, they have a noticeable influence on the latency, as discussed
in Section 6.1.7. Our model only considers the latencies and packet losses caused
by interrupts during profiling. However, as we see in Figure 6.10(b), an interrupt
can generate extreme worst-case latencies. Our model is not capable of accurately
representing such a scenario. To adapt our model, we need more precise information
about the frequency of the interrupts and their influence.
The connection tracking of VPP uses connection timeouts to avoid infinitely filling

the hash table with connection entries. VPP deletes the corresponding entry in the
hash table after a specific time if no packet from this connection occurs. Since this
timeout can be set arbitrarily by the administrator, it is possible that the overhead
of the connection tracking increases. The timeout can be set so small that for each
packet of a connection, the additional connection entry overhead is necessary. Since
our model does not know the exact timeouts, we cannot estimate the effects of this
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edge case.
Points like these cause our model not to be able to predict every network device’s

behavior accurately.

7.4 Measurement Limitations
The network traffic that a firewall has to process can differ from network to network.
In some networks, the data rate changes constantly, and packet sizes vary from small
to large. In other networks, small packets are predominant, and the data rate is
mostly constant. In our measurements, we cannot simulate every possible network
traffic.

7.4.1 General Limitations

To create our model, we try to generate generally realistic network traffic. Therefore,
we use the Poisson distribution for our packet size generation. We also change the
data rate to observe the behavior of the DUT under varying conditions. With this
method, we can form a general behavior pattern of the DUT. However, we do not
profile specific types of network traffic with this method. After profiling, our model
offers the option of specifying whether small or large packets are more likely to occur
in the network. With this specification, our model then uses rather large or small
packets of the profiling for its prediction.

7.4.2 Packet Loss Measurement Limitations

To determine the packet loss, we compare the number of packets we generate and the
number of packets we analyze in our MoonGen script. The difference between them
determines our packet loss. Due to our packet generator warm-up phase, we already
generate packets for five seconds until our recording starts. However, the counter
for the generated and analyzed packets already counts in the warm-up phase. We
do so because some packets we generate before the recording start are part of the
analysis taking place during the recording. Hence, we also consider these packets for
the packet loss calculation. In addition, we count packets that we generate shortly
before the end of the recording but do not process at the packet generator before the
end of the recording. Packets that MoonGen generates during recording and never
processes because the recording ends before occur only in combination with very
small packets (64 bytes) and a high data rate (1000 MBit/s). At 700, 000 pps, this
means ≈ 35 packets that MoonGen incorrectly measures as packet loss. Accordingly,
this type of packet loss only occurs in edge cases. Without adding additional IDs
in the packets, we cannot trace the actual packet loss. The additional overhead of
checking each packet for packet loss, however, results in packet loss itself. With a
small packet size and a high data rate, the generator cannot check all packets on the
fly for packet loss. This leads to packet loss at the ingress of the packet generator.
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7.5 Improvements for Iptables
In our research, we found that VPP offers lower latency and packet loss than iptables.
Additionally, the behavior of stateful rules is different. In VPP, the latency behaves
static for stateful rules, but in iptables with stateful rules, it behaves linearly. By
examining the packet flow in each firewall, we can show why the stateful rule behaves
differently in both firewalls. Despite the match in the connection table, iptables
checks each filter rule until it finds the matching one. This leads to no performance
optimization in comparison to stateless rules.
If VPP encounters a match in the connection table, VPP forwards the packet

directly. Iptables still checks the filter rules after a match to ensure that there are
no outdated entries in the connection table. To improve the stateful rules, iptables
must clear the entire connection table after each rule change. As a result, iptables
has the same advantages and disadvantages as VPP when dealing with stateful
rules. With this optimization, iptables must create a new entry in the connection
table for each new connection, even if it already existed before flushing the table.
But the advantage of this optimization is that iptables can forward packets directly
if there is a matching entry in the connection table. The stateful optimization means
connections with connection tracking can communicate faster and tend to have less
packet loss.
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8 Conclusion
In this thesis, we created and simulated a model that predicts the latency, jitter, and
pack loss behavior of firewalls on network performance. In the following, we first
summarize the results and findings of this thesis. Afterward, we provide an outlook
for future work.

8.1 Summary
In Chapter 5, we defined the framework conditions for our model and the measure-
ment environment. To generate our network traffic most realistically, we varied the
packet size and data rate. We exposed the DUT to realistic network scenarios to
provide valuable results.
On the basis of the system model in Chapter 6, we determine and investigate

the parameters influencing the network performance. The parameters that influence
the behavior of a firewall are the network traffic, the firewall rules, and cross traffic
that creates additional interrupts on the firewall. We combine the findings from
these investigations into our prediction model. The base version of our model can
predict the latency of the firewall without firewall rule configurations. For industrial
applications, it is essential to know the amount of network-related packet loss to
ensure reliable operation. Therefore, we also included packet loss prediction in our
model. Using the insights gained from our firewall rule configurations investigations,
we were able to adjust our model such that it predicts the behavior of the firewall
with firewall rules. Once more detailed information on network traffic packet sizes is
available, our model provides the ability to include this information in the prediction
and thus predict more accurate results. Our investigations of network traffic revealed
that the change in data rate has a direct influence on the latency behavior of the
firewall. Therefore, we allow our model to make predictions in the time interval. We
do so by specifying the interval and the parameters that change over time. Our model
can use this information to predict the latency curve over time. To automate the
creation of models for new firewalls, we developed a profiling script. The profiling
script tests different firewall rule configurations, measures the latency and packet
loss behavior of a firewall, and makes the results available for modeling.
In Chapter 7, we demonstrate the accuracy of our model by applying it to other

firewalls. Therefore, we present the behavior predictions of our model for different
software firewalls. We conclude (with our results) that iptables firewalls behave
similarly. The higher latency and jitter of DUT 2 in comparison to DUT 1 is due
to the difference in hardware performance. We define the term overload area for
software firewalls as the area where packet loss in combination with high latency
occurs. We show that the VPP firewall delays the overload area as much as possible
through its vector-based processing. In the overload area, the latency of VPP
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behaves like that of an iptables firewall. For sending real-time critical data across
network boundaries, information about the behavior of the firewalls at the edge of
the networks is necessary. The user can select the appropriate firewalls based on
the information regarding latency, jitter, and packet loss. We demonstrate with
our results that our model is suitable to support the planning phase of industrial
networks. Our model predicts firewall latency performance accurately enough for
cyclic and acyclic TSN traffic to enable device selection decisions based on these
results. The firewall behavior prediction makes it possible to decide during the
network planning phase which firewalls are capable of serving the required quality
of service.

8.2 Future Work
With our model, we predict the performance impact of network traffic on software
firewalls. The following section first describes the ideas we still have regarding our
model and profiling. Finally, we describe the simulation possibilities we would like
to explore with our model.

8.2.1 Open Source Profiling

The further development of our model for more precise predictions requires more
data from various firewalls. It is useful to publish our profiling to get as much
data about different firewalls as possible. To publish our profiling of firewalls, it is
essential that the time stamping also works without an extra time stamping switch.
Therefore, we have to investigate how applicable the time stamping function of
the MoonGen packet generator is. Not only can the performance of the packet
generator be affected, but the precision of the time stamps can also vary due to
the additional overhead. This behavior only occurs when MoonGen generates and
processes small packets (64 Bytes) with a high data rate (1000 MBit/s). This
combination corresponds to a boundary condition and is not decisive for the overall
network traffic. When evaluating the time stamps, we found that the performance
of our packet generator suffers from too many operations during runtime. The
hardware on which our package generator runs limits its performance. Depending
on how huge the influence on the time stamping is, it will affect the prediction of
the corner case. For iptables firewalls, this boundary condition affects the overload
area. Firewalls in industrial networks must not operate in the overload area to avoid
packet loss. Since we design our model for the consideration of firewalls in industrial
networks, the overload area does not matter. Nevertheless, we must investigate and
exclude such a measurement error prior to publication.

8.2.2 Simulation with OMNeT++

Other research uses simulation tools to show the applicability of scheduling and
quality of service. For instance, the Network Simulator for Time-Sensitive Networking
(NeSTiNg) project uses OMNeT++ to simulate TSN [50]. Simulation frameworks
such as OMNeT++ save time and money because there is no need for us to build
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up the network structure in reality. So far, there is no firewall behavior model like
ours available for a simulation tool. A simulation framework offers the possibility to
model networks. We can include our model in this network and test what behavior
it predicts. Therefore, it is necessary to integrate our model into a simulation
framework such as OMNeT++ to simulate the prediction of our model in different
networks.
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