Improving the Session Table Handling of Stateful
Firewalls to Achieve Constant-Time Packet Filtering

Dennis Tudenhéfner
University of Applied Sciences Esslingen
detuitO0 @hs-esslingen.de

I. INTRODUCTION

In today’s industrial networks, control systems are limited
to small and isolated networks, as the communication is often
time-critical and tightly clocked. With the introduction of
Time-Sensitive Networking (TSN), an extension to standard
Ethernet, industrial control systems can be integrated into large
corporate networks. TSN enables deterministic forwarding of
of packets with strict timing guarantees by minimizing the
variation of latency (jitter).

With respect to the trend of growing industrial infras-
tructures, IT security measures are becoming increasingly
essential. In recent years, companies struggled with severe
production downtimes, damaged plants, and data loss due to
cyber attacks. A basic and suitable measure against attacks
is the separation of the network into zones. This concept
is called network segmentation. Network administrators can
place firewalls between the zones to analyze and filter the
traffic. The mechanisms to filter packets with firewalls are
implemented either in hardware (e.g., using an application-
specific integrated circuit, ASIC) or in software (i.e., using
a CPU). Filtering in hardware only increases the delay and
jitter slightly, which makes it a suitable solution for industrial
networks [1]. However, filtering in hardware has its drawbacks
as well: vendor-specific implementations, less flexibility in
filtering rules, and a limited total amount of rules. Filtering
in software, on the other hand, strongly increases the jitter of
the packet processing time, but offers more flexibility in its
implementation and runs on commodity hardware. Due to the
limitations of hardware-based firewalls, our goal is to improve
the filtering performance of software firewalls.

So far, there are no software firewall implementations
available that guarantee constant-time packet filtering in order
to satisfy the latency requirements of industrial networks. To
achieve constant-time packet filtering with software firewalls,
we adapt existing packet filtering mechanisms. Firewalls usu-
ally rely on two packet filtering mechanisms:

1) Stateless filtering: Stateless filtering is designed to filter
packets by comparing packet header fields with a set of rules.
To allow or block a packet from passing through the firewall,
the 5-tuples (source IP address, source port, destination IP
address, destination port, protocol) of the rules are matched
against the header fields of the arriving packet. Based on the
result, the firewall takes an action defined in the matched rule
(e.g., allow or block the packet).

2) Stateful filtering: Stateful filtering keeps track of the
state of existing sessions. It uses a session table, also called
connection state table, to track packets belonging to a known
active session. The firewall always matches incoming packets
with the 5-tuple entries of the session table. When it finds
a matching entry, it allows the packet to pass through and
updates the corresponding table entry with the latest session
state information. If the packet does not match any entry, the
firewall processes it using the stateless filtering mechanism
and decides whether to allow or block the packet.

Due to the fact that stateless firewalls process rules one after
another, the latency for packet processing increases linearly
with the growing number of rules. Hence, an increasing
number of rules can slow down the packet processing time of
the firewall excessively. We intend to use stateful filtering as
a basis for packet filtering with low jitter. Storing the session
table as a hash table enables the firewall to perform session
table lookups in constant time. The firewall extracts and hashes
the 5-tuple of an arriving packet and uses it to access the
corresponding table entry directly. The firewall is not required
to iterate over every single field of the table entry anymore.
Therefore, stateful filtering is better suited for time-critical
applications than stateless filtering. However, the problem with
stateful filtering is that the implementation, as it is found in
software firewalls, is unsuitable for time-critical applications.
For example, initial packets of a session pass through the
jitter-prone stateless filtering mechanism instead of the stateful
filtering mechanism.

Our approach is to modify and extend the stateful filtering
mechanism in order to make it suitable for time-critical appli-
cations. Hereby, we want to use the existing high-performance
software networking stack FD.io VPP [3] with the included
Access Control List (ACL) plugin as a proof-of-concept (PoC)
implementation.

II. RELATED WORK

Packet filtering is implemented either in software or in
hardware. One difference between both implementations is
the delay of forwarding packets caused by their processing
time. Wiisteney et al. [1] compare the filtering performance
between hardware- and software-based firewalls regarding the
usability in TSN networks. According to them, software-based
implementations are more affected of varying CPU load which
causes additional jitter. Zvabva et al. [4] present measurements
of network packet latency, jitter and packet loss caused by



the introduction of industrial firewalls when the network is
segmented with the concept of zones, security levels and
conduits according to the security standard IEC 62443.

Schramm [2] presents and implements three ideas to achieve
low jitter and latency on software firewalls. However, he
does not consider stateful sessions in his firewall design. The
firewall interrupts the stateless check of the packet of a new
session after a certain time limit exceeds. After the time limit
exceeded, the firewall forwards the packet without complete
check to limit the maximum jitter. Assuming this packet
belongs to a session that will be stored in the session table,
this packet passes through the stateless filtering mechanism
only once. The following packets of the session only pass
through the stateful filtering mechanism, assuming the first
packet was checked completely and is allowed. This behavior
faces a security issue, which we want to avoid in this work.

Another research area focuses on session table enhancement
techniques to improve the processes to create, delete, and
lookup session table entries. Chomsiri et al. [5] propose
a session tracking system with a hash table for tree-rule
firewalls that reduces memory consumption and processing
time. Moreover, they show that the processing speed of their
stateful firewall implementation is much faster than iptables.
The tree-rule firewall is introduced by the same authors in [6].
It is a modified firewall that organizes its rules in a designated
tree structure, not in lists. The work presented in [7] proposes
a hybrid firewall implementation that takes advantage of both
the tree-rule and stateless filtering mechanism to ensure high
packet processing speed without rule conflicts. In addition, the
authors added a feature that moves frequently matched rules
to higher positions in the rule list automatically. They measure
the firewall speed drop (in terms of packets per second, and
megabytes per second) and packet loss with raising number of
rules. However, they do not measure jitter or latency, which
we want to consider in this work.

Rovniagin and Wool [8] revisit a classic algorithm from
computational geometry and integrate it within the filter-
ing mechanism of iptables. The algorithm, called Geomet-
ric Efficient Matching (GEM), performs packet matching in
O(dlogn) time and requires O(n?) space in the worst case,
where n is the number of rules and d the number of fields
in the packet header to match. Their optimized GEM-iptables
implementation sustains a packet matching rate of over 30,000
packets per second (pps), with 80-byte packets and 10,000
rules, without packet loss on a standard PC workstation. In
comparison, the unmodified Linux iptables could only sustain
a rate of around 2,500 pps. However, the space complexity
of the algorithm is impractical for our implementation, as we
aim to achieve packet matching in O(1) time.

To the best of our knowledge, there is only one research
work that proposes an integrated solution that enhances stateful
packet filtering and the session table architecture. Trabelsi and
Zeidan [9] propose a session table architecture that invokes
the hash function only once per session to reduce memory
space consumption and filtering time. According to them,
storing all session state information in one table entry causes

additional processing time, especially for session table timeout
attributes. Therefore, they separate the session table entries
(session states and timeout attributes) into two different data
structures to enhance the session table lookup and processing
time. Nonetheless, the authors do not consider the latency
impact of the firewall caused by the use of stateless filtering.
We intend to avoid the firewall from using the stateless filtering
mechanism by using the session table.

III. DESIGN

To date, software firewalls implementing stateful filtering
are not suitable for constant-time packet filtering. This is be-
cause the first packet of a session passes through the stateless
filtering mechanism. As a result, this behavior increases the
latency and jitter of the firewall.

In the context of this work, we examine different approaches
to modify and improve the stateful packet filtering mechanism.
Hereby, we aim to reduce the jitter to gain a constant latency
of processing packets with our software-based firewall imple-
mentation. The following section describes the approaches and
difficulties to improve and implement stateful filtering effi-
ciently in order to make our firewall implementation suitable
for time-critical applications.

a) Explicit use of the session table: Stateless filtering cannot
guarantee a constant latency, as the duration to process a
packet depends on the number of rules that need to be
matched. The use of the session table will help to overcome
this problem. In iptables the firewall performs the stateless
check despite a match in a previous stateful check. Hereby, the
firewall does not take advantage of the session table regarding
the constant-time behavior. In contrast, FD.io VPP solves this
problem and skips the stateless check if there is a match in the
session table. However, there is one exception in VPP: When
the firewall sees a session for the first time, the first packet
of that session passes through the stateless check because
there is no existing entry in the session table. This means
that incoming packets of a new session always need to pass
through the stateless check. As a result, this behavior increases
the latency and jitter of the firewall for some packets, which
is not suitable for industrial applications.

b) Improving the session tracking mechanism: Modifying
(i.e., deleting or adding) the firewall rules in VPP leads to the
deletion of all session table entries. In addition, the firewall
uses timeouts to terminate and delete old sessions in the
session table automatically. Whenever the session table is
empty or no existing entry matches, all initial packets need
to pass through the stateless check. In order to avoid the first
packet from passing through the stateless check, we insert
known sessions, e.g., TSN streams, statically into the session
table. This guarantees that the entries are always present in the
session table. Furthermore, by implementing static entries we
prevent session table entries from being deleted by timeouts.
However, not all information about the static entries is known
at the time when inserting the entries into the session table. For
example, when a client connects to a server, the destination
port is usually known beforehand while the source port is



unknown because it is ephemeral. However, the session table
requires that all 5-tuple fields are known. We want to solve this
problem by ignoring the source port of certain known sessions
within the session table. We will implement this by hashing
individual parts of the 5-tuple, not the entire 5-tuple.

c) Optimizing the session table maintenance: Modifying the
firewall ruleset in VPP leads to the deletion of all session
table entries. As a result, following packets pass through the
stateless mechanism again, increasing latency and jitter. We
want to prevent all session table entries from being deleted
by only deleting the entries that are no longer allowed after a
rule modification. Thus, we keep the untouched session table
entries in the session table. However, is not easy to implement
this efficiently, which is probably the reason why it is not
implemented presently in VPP. We already have a basic idea
to implement the optimization from above, however, we will
continue to optimize the idea during the thesis:

1) Simple approach (iterate over all session table entries and
firewall rules): After each ruleset modification, the firewall
must iterate over all rules for each session table entry and
inspect whether the session table entry is still allowed in
the updated ruleset. Session table entries that are no longer
allowed must be deleted because we want to keep only session
table entries that are allowed. This approach has one drawback:
iterating over all entries and rules is feasible, but time consum-
ing, as the firewall must check each entry against the rules. The
slow update of the session table is especially a problem when
changing several rules in the ruleset successively. While this
is no problem with VPP, because it allows changing multiple
rules in one command or API request, this can be an issue with
other firewalls. Furthermore, we need to address the scenario
for new sessions that are processed by the firewall during the
iteration over the session table entries. To mitigate these issues,
we can make this simple approach faster by optimizing it.

2) Optimization of the simple approach to reduce the
processing time (store the reference of a firewall rule in the
corresponding session table entries): To optimize the simple
approach, we add a new field to the session table entry. The
new field stores a reference to the firewall rule that allowed
the first packet of the corresponding session to pass through.
This eliminates the need to iterate over the entire ruleset after
a ruleset change and allows the firewall to start the iteration
from the referenced rule. For example, when a referenced rule
is being deleted, it is no longer necessary to iterate over all
firewall rules for each session table entry. Instead, the firewall
starts to iterate from the deleted rule that is referenced. If the
session table entry does not match a subsequent allow-rule the
firewall deletes the session table entry.

IV. EVALUATION

The evaluation of this work will consist of measurements of
latency, jitter, packet loss, and overhead of our implementation.
We will compare the time behavior of our firewall before and
after modification. Based on the result, we will evaluate the
implemented stateful mechanisms with respect to its efficiency,
security and limitations.

To perform the mentioned measurements we will use a
low-performance industrial firewall or a comparable low-
performance computer with a x86 CPU. Our proof-of-concept
firewall version will be installed and deployed on a Linux-
based operating system. We will use a dedicated traffic gen-
erator to put specific load on the firewall. A managed switch
will be used to conduct time stamping on the packets in order
to measure the latency. To reach our goal, the proof-of-concept
firewall must provide:

o Lower jitter than the original firewall implementation,
ideally, the jitter will be below 100 ps

o Not a significant increase in latency (due to processing
overhead)

« No security degradation compared to the original firewall

V. RESULT

The result of this work will be a proof-of-concept fire-
wall implementation with corresponding performance mea-
surements. The evaluation of the implementation will face
whether the firewall can achieve low jitter with constant-time
behavior while maintaining the level of security.

If the implementation works and shows the expected be-
havior, we will upstream the optimized source code to the
FD.io Git repository. Ideally, the firewall can be installed and
deployed in a production environment to increase the security
of industrial networks.

REFERENCES

[1] L. Wiisteney, M. Menth, R. Hummen, and T. Heer, “Impact of packet
filtering on time-sensitive networking traffic,” in 2021 17th IEEE Inter-
national Conference on Factory Communication Systems (WFCS), 2021,
pp. 59-66.

[2] M. Schramm, “Adaptation of the vpp firewall for real-time packet
processing in industrial environments,” Master Thesis, Eberhard Karls
Universitidt Tiibingen, 2022.

[3] “Fdio - the universal dataplane.” [Online]. Available: https://fd.io/
,[Accessed:16-12-2022].

[4] D. Zvabva, P. Zavarsky, S. Butakov, and J. Luswata, “Evaluation of in-
dustrial firewall performance issues in automation and control networks,”
in 2018 29th Biennial Symposium on Communications (BSC), 2018, pp.
1-5.

[5] T. Chomsiri, X. He, P. Nanda, and Z. Tan, “A stateful mechanism for
the tree-rule firewall,” in 2014 IEEE 13th International Conference on
Trust, Security and Privacy in Computing and Communications, 2014,

pp. 122-129.
[6] X. He, T. Chomsiri, P. Nanda, and Z. Tan, “Improving cloud
network security using the tree-rule firewall,” Future Generation

Computer Systems, vol. 30, pp. 116-126, 2014. [Online]. Available:
https://doi.org/10.1016/j.future.2013.06.024

[7] T. Chomsiri, X. He, P. Nanda, and Z. Tan, “Hybrid tree-rule firewall for
high speed data transmission,” IEEE Transactions on Cloud Computing,
vol. 8, no. 4, pp. 1237-1249, 2020.

[8] D. Rovniagin and A. Wool, “The geometric efficient matching algorithm
for firewalls,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 1, pp. 147-159, 2011.

[9] Z. Trabelsi and S. Zeidan, “Enhanced session table architecture for state-
ful firewalls,” in 2018 IEEE International Conference on Communications
(ICC), 2018, pp. 1-7.



