Hochschule Esslingen University of Applied Sciences

Fakultät Grundlagen

Wintersemester	2017/18	Blatt 1 (von 2)
Studiengang:	MBB, MAP	Semester 3
Prüfungsfach:	TM2, Teil: Technische Physik 1	Fachnummer: 1173001, 3012
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 50 Minuten

Lösungen

Aufgabe 1: Fadenpendel

(24 Punkte)

- Die abgewickelte Strecke ist die Bogenlänge $s = r\varphi$ (positive Werte bedeuten, daß der Faden abgewickelt wird, negative Werte, daß er aufgewickelt wird).
 - Der Abstand der Punktmasse von P ist gerade die Länge $l(\varphi)$ des Fadens; sie beträgt

$$l(\varphi) = l_0 + r\varphi.$$

(b) Für P hat man direkt

$$x_P(\varphi) = r \cos(\varphi), \quad y_P(\varphi) = r \sin(\varphi).$$

Für m ergibt sich damit (betrachte das rechtwinklige Dreieck, dessen Hypotenuse durch den abgewickelten Faden zwischen P und m gegeben ist, und dessen Katheten achsenparallel sind)

$$x(\varphi) = x_P(\varphi) + l(\varphi)\sin(\varphi) = r\cos(\varphi) + (l_0 + r\varphi)\sin(\varphi),$$

 $y(\varphi) = y_P(\varphi) - l(\varphi)\cos(\varphi) = r\sin(\varphi) - (l_0 + r\varphi)\cos(\varphi).$

(c) Mit

$$\dot{x} = (-r\sin(\varphi) + r\sin(\varphi) + (l_0 + r\varphi)\cos(\varphi))\dot{\varphi} = (l_0 + r\varphi)\cos(\varphi)\dot{\varphi}$$

$$\dot{y} = (r\cos(\varphi) - r\cos(\varphi) + (l_0 + r\varphi)\sin(\varphi))\dot{\varphi} = (l_0 + r\varphi)\sin(\varphi)\dot{\varphi}$$

erhält man

$$v(t) = \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} = \left| (l_0 + r\varphi)\dot{\varphi} \right|.$$

Für die potenzielle Energie hat man, wenn man das Nullniveau in die Gleichgewichtslage legt (was bei der vorliegenden Aufgabe aber unerheblich ist),

$$E_{pot} = mg(y(\varphi) - y(0)) = mg(r\sin(\varphi) - (l_0 + r\varphi)\cos(\varphi) + l_0).$$

Für die kinetische Energie erhält man mit dem vorigen Aufgabenteil

$$E_{kin} = \frac{m}{2} v^2(t) = \frac{m}{2} (l_0 + r\varphi)^2 \dot{\varphi}^2.$$

(e) Aus dem Energiesatz $0 = \dot{E}_{ges}(t)$ und dem vorigen Aufgabenteil folgt

$$0 = \frac{d}{dt} \left(\frac{m}{2} (l_0 + r\varphi)^2 \dot{\varphi}^2 + mg (r \sin(\varphi) - (l_0 + r\varphi) \cos(\varphi) + l_0) \right) =$$

$$= m(l_0 + r\varphi)r\dot{\varphi}^3 + m(l_0 + r\varphi)^2 \dot{\varphi}\ddot{\varphi} +$$

$$+ mg \left(r \cos(\varphi) - r \cos(\varphi) + (l_0 + r\varphi) \sin(\varphi) \right) \dot{\varphi}$$

$$= m\dot{\varphi}(l_0 + r\varphi) \left[r\dot{\varphi}^2 + (l_0 + r\varphi)\ddot{\varphi} + g \sin(\varphi) \right],$$

und nach Division durch $m\dot{\varphi}(l_0 + r\varphi)$ und Umordnung der Terme schließlich

$$(l_0 + r\varphi)\ddot{\varphi} + r\dot{\varphi}^2 + q\sin(\varphi) = 0.$$

Hochschule Esslingen

University of Applied Sciences

Fakultät Grundlagen

(f) Für $r \to 0$ ergibt sich ein mathematisches Pendel; für die DGl gilt in diesem Grenzfall $l_0\ddot{\varphi} + g\sin(\varphi) = 0$,

und das ist auch genau die DGl des mathematischen Pendels.

- (g) Harmonische Schwingungen ergeben sich, wenn die zugrunde liegende Differentialgleichung linear ist. Man muß hier also linearisieren; das bedeutet:
 - 1. Es muß $\sin(\varphi) \approx \varphi$ gelten; d.h. es muß $|\varphi| \lessapprox 10^{\circ}$ sein.
 - 2. Der zweite Term $r\dot{\varphi}^2$ der DGl muß vernachlässigbar sein.
 - 3. Das Produkt $r\varphi$ muß gegenüber l_0 vernachlässigbar klein sein, damit auch der erste Term der DGl linear wird.

Mit dem vorigen Aufgabenteil kann man auch argumentieren, daß r hinlänglich klein sein muß, sodaß die DGl des mathematischen Pendels eine gute Näherung darstellt, und daß weiter $|\varphi| \lessapprox 10^\circ$ sein muß, damit diese DGl linearisiert werden kann.

Aufgabe 2: Überlagerung von Schwingungen

(10 Punkte)

a)
$$f_{\text{Schweb}} = f_1 - f_2$$
 (für $f_1 > f_2$)
$$f_1 = f_{\text{Schwing}} + \frac{f_{\text{Schweb}}}{2} = 441 \text{ Hz}$$

$$f_2 = f_{\text{Schwing}} - \frac{f_{\text{Schweb}}}{2} = 439 \text{ Hz}$$

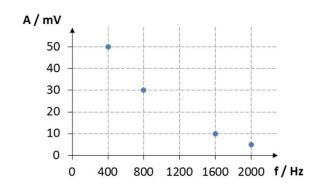
$$f_{\text{Schwing}} = \frac{f_1 + f_2}{2}$$

b) Spektrum

Grundfrequenz ist $f_0 = \Delta f = 400 \text{ Hz}$

Die 3. Oberschwingung mit $1600~\mathrm{Hz}$, hat die Amplitude $10~\mathrm{mV}$.

Die 4. Oberschwinung mit 2000 Hz, hat die Amplitude $5~\mathrm{mV}.$



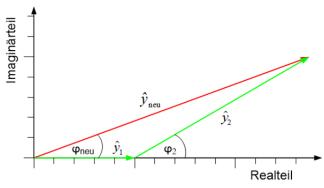
c) Grafische Lösung

$$\hat{y}_{\text{neu}} = 145 \text{ mm}$$
 $\varphi_{\text{neu}} = 20 \,^{\circ}$

Alternative mit Formeln

$$\hat{y}_{\text{neu}} = \sqrt{\hat{y}_1^2 + 2\hat{y}_1\hat{y}_2\cos(\varphi_1 - \varphi_2) + \hat{y}_2^2}$$

$$\hat{y}_{\text{neu}} = 145.5 \text{ mm}$$



und
$$\tan \varphi_{\rm neu} = \frac{\hat{y}_1 \sin \varphi_1 + \hat{y}_2 \sin \varphi_2}{\hat{y}_1 \cos \varphi_1 + \hat{y}_2 \cos \varphi_2}$$

$$\varphi_{\rm neu} = 20.1 \, ^\circ$$

Hochschule Esslingen University of Applied Sciences

Fakultät Grundlagen

Wintersemester	2017/18	Blatt 2 (von 2)
Studiengang:	MBB, MAP	Semester 3
Prüfungsfach:	TM2, Teil: Technische Physik 1	Fachnummer: 1173001, 3012

<u>Aufgabe 3:</u> Dopplersonografie

(16 Punkte)

- a) Der Effekt ist umso deutlicher, je kleinere Werte cos φ annimmt. Jedoch wird φ < 10° aus technischen Gründen nicht möglich sein, da der Schallkopf sich nicht im strömenden Fluid befinden kann, er muss ja auf die Haut aufgesetzt werden. Ein sinnvoller Wertebereich ist also etwa $10^{\circ} \le |\varphi| \le 60^{\circ}$.
- b) Komponentenzerlegung: $v_{\parallel} = v_0 \cos \varphi$
- c) Vom Teilchen registrierte Frequenz f_1 (bewegter Beobachter, ruhende Quelle):

$$f_1 = f_0 \left(1 + \frac{v_{\parallel}}{c} \right)$$

Vom Empfänger registrierte Frequenz f_2 (bewegte Quelle, ruhender Beobachter)

$$f_2 = f_1 / \left(1 - \frac{v_{\parallel}}{c}\right)$$

Also ist

$$f_2 = f_0 \left(1 + \frac{v_{\parallel}}{c}\right) / \left(1 - \frac{v_{\parallel}}{c}\right) = f_0 \left(\frac{c + v_{\parallel}}{c - v_{\parallel}}\right)$$

und die Frequenzdifferenz

$$\Delta f = f_2 - f_0 = f_0 \left(\frac{c + v_{\parallel}}{c - v_{\parallel}} - 1 \right) = f_0 \left(\frac{2v_{\parallel}}{c - v_{\parallel}} \right)$$

Für $v_{\parallel} \ll c$

gilt in guter Näherung
$$\Delta f = f_0 \left(\frac{2v_{\parallel}}{c}\right) = f_0 \left(\frac{2v_0}{c}\right) \cos \varphi$$

d) Wellenlänge

$$\lambda = c/f = 0.308 \cdot 10^{-3} \text{ m}$$

Wellenzahl

$$k = 2\pi/\lambda = 20400 \cdot \text{m}^{-1}$$

e) Frequenzdifferenz $\Delta f = 500.8 \text{ Hz}$

$$\Delta f = 500,8 \,\mathrm{Hz}$$

 $I = p_{eff}^2/Z$ mit dem Schallwellenwiderstand $Z = \rho \cdot c$ f) Intensität

Hier ist $Z = 1,463 \cdot 10^6 \text{ kg} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ im umgebenden Medium

Somit $p_{\rm eff}^2 = Z \cdot I$

und damit folgt

 $p_{\rm eff} = 38249 \, \text{Pa} = 0.382 \, \text{bar}$