Hochschule Esslingen University of Applied Sciences

Fakultät Grundlagen

Wintersemester	2012/2013	Blatt 1 (von 5)
Studiengang:	BTB1 / CIB1	Semester 1
Prüfungsfach:	Physik 1	Fachnummer: 1071, 1072
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 Minuten

Gesamtpunktzahl: 60

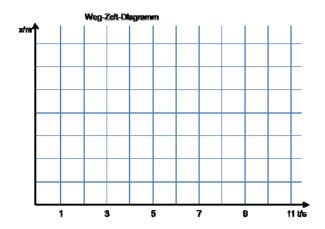
Bitte beginnen Sie jede Aufgabe auf einem neuen Blatt!

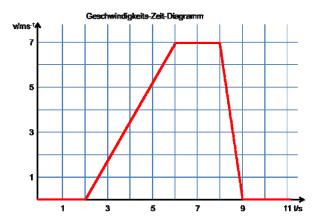
Massenträgheitsmoment bei Drehung eines Zylinders mit Radius r um seine

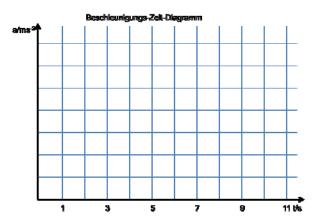
Längsachse:
$$J_{Zylinder} = \frac{1}{2}m \cdot r^2$$

<u>Aufgabe 1: Marssonde</u> (5 Punkte)

Bei der Erkundung der Marsoberfläche wird eine Sondierungssonde unter einem Winkel von α =45° mit einer Anfangsgeschwindigkeit von v=25 $\frac{m}{s}$ abgefeuert. Die Marsbeschleunigung g_{Mars} beträgt das 0,37fache der Erdbeschleunigung.

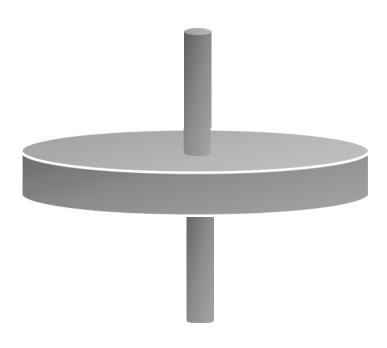

Wie lange dauert es vom Zeitpunkt des Abfeuerns bis die Sonde wieder den Boden berührt?


Annahme: Abschusshöhe ~ Bodenniveau


Wintersemester	2012/2013	Blatt 2 (von 5)
Studiengang:	BTB1 / CIB1	Semester 1
Prüfungsfach:	Physik 1	Fachnummer: 1071, 1072
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 Minuten

Aufgabe 2: Kinematik (14 Punkte)

Skizzieren Sie in den Grafiken den zurückgelegten Weg und die Beschleunigung, die zum Geschwindigkeits-Zeit-Diagramm gehören.


Wintersemester	2012/2013	Blatt 3 (von 5)
Studiengang:	BTB1 / CIB1	Semester 1
Prüfungsfach:	Physik 1	Fachnummer: 1071, 1072
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 Minuten

Aufgabe 3: Schleifscheibe (13 Punkte)

Eine zylindrische Schleifscheibe mit einer Masse m=2,8 kg und dem Radius r=18 cm dreht sich mit 1500 Umdrehungen /min.

Die Lagerreibung kann vernachlässigt werden.

- a) Wie groß ist das Massenträgheitsmoment der Schleifscheibe bezogen auf die Drehachse?
- b) Wie groß ist ihr Drehimpuls bezogen auf die Drehachse?
- c) Wie groß ist das Drehmoment, das erforderlich ist, sie innerhalb von Δt =7 s anzuhalten?
- d) Wie groß ist die dafür aufzuwendende Arbeit?

Wintersemester	2012/2013	Blatt 4 (von 5)
Studiengang:	BTB1 / CIB1	Semester 1
Prüfungsfach:	Physik 1	Fachnummer: 1071, 1072
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 Minuten

Aufgabe 4: Paketband (14 Punkte)

Auf einer Gepäckrampe rutscht ein rechteckiger Koffer (1) der Masse m_1 =19,5 kg herunter und trifft auf der anschließenden waagerecht verlaufenden Strecke mit einer Geschwindigkeit von v_1 =2,5 $\frac{m}{s}$ auf einen gleich großen Koffer (2), der dort versehentlich stehen geblieben ist (Annahme: kurze Kontaktzeit, Reibung auf der Rampe kann vernachlässigt werden).

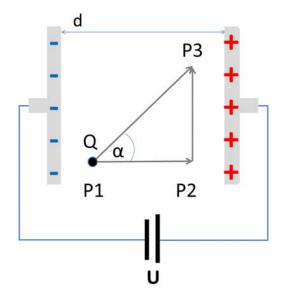
Direkt nach dem Aufprall bewegt sich der erste Koffer (1) mit einer Geschwindigkeit von $v_{1nach} = 0.15 \frac{m}{s}$ rückwärts, der zweite Koffer (2) bewegt sich nun mit einer

Anfangsgeschwindigkeit von $v_{2nach}=1,8 \frac{m}{s}$ vorwärts.

- a) Wie groß ist die Masse m2 des zweiten Koffers?
- b) Wie viel der ursprünglichen mechanischen Energie geht beim Aufprall in nichtmechanische Energie über?

Auf der Gummirampe beträgt der Reibungskoeffizient µ=0,75.

- c) Wie groß ist auf dem horizontalen Stück die Reibungskraft auf den zweiten Koffer?
- d) Wie weit rutscht der zweite Koffer nach dem Aufprall noch bis er zum Stehen kommt?



Wintersemester	2012/2013	Blatt 5 (von 5)
Studiengang:	BTB1 / CIB1	Semester 1
Prüfungsfach:	Physik 1	Fachnummer: 1071, 1072
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 Minuten

<u>Aufgabe 5: Kondensator</u> (14 Punkte)

Elementarladung $e = 1,602 \cdot 10^{-19} C$ Elektronenmasse $m_e = 9,109 \cdot 10^{-31} kg$

- a) Wie groß ist die Feldstärke im homogenen Feld bei einem Plattenabstand von d=0,2 cm und einer Spannung von U=4,5 V?
- b) Wie groß ist die Kraft auf die Ladung Q=e?
- c) Wie groß ist die Beschleunigung einer Elementarladung e?
- d) Wie lange dauert es, die Strecke x_1 =0,1 cm von P1 bis zu P2 zurückzulegen, wenn die Ladung von Position P1 aus der Ruhe startet?
- e) Wie groß ist die Arbeit, die benötigt wird, die Ladung von P2 nach P3 zu verschieben? Der Abstand P2-P3 beträgt x₂=0,1 cm.
- f) Wie groß ist die Arbeit W, die benötigt wird, die Ladung von P1 nach P3 zu verschieben? Der Winkel α beträgt 45°.
- g) Zeichen sie die Feldlinien unter Berücksichtigung der Ladung Q in die Skizze ein.

