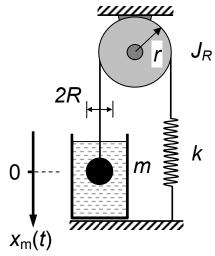
Hochschule Esslingen

University of Applied Sciences

Sommersemester 2009		Blatt 1 (von 3)
Studiengang:	MB3 A / B	Semester 3
Prüfungsfach:	TM2, Teil 2 : Schwingungslehre (Bitte Teil 2 separat austeilen)	Fachnummer: 3011 3012
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 50 Minuten

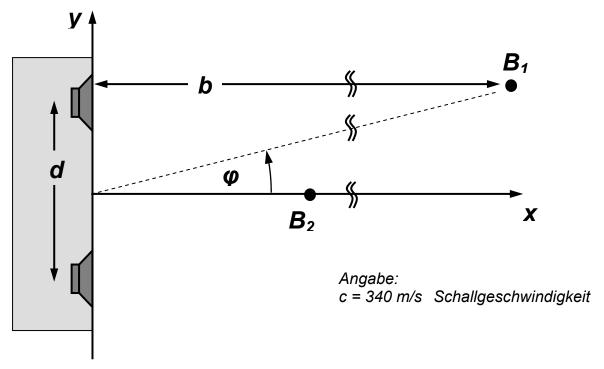

Gesamtpunktzahl: 50

Aufgabe 1: Viskosimeter

(20 Punkte)

Um die Viskosität η eines Öls zu bestimmen, wird die Frequenz der gedämpften Schwingung einer Stahlkugel gemessen. Die Kugel hängt an einem Faden, der über eine Umlenkrolle geführt und an einer Feder befestigt ist. Die Faden- und die Federmasse können vernachlässigt werden (siehe Skizze).

Für die geschwindigkeitsproportionale viskose Reibungskraft der Kugel in Öl gilt nach Stokes: $F_R = 6 \pi \eta R v$.


- 1) Einfaches Modell: ohne Berücksichtigung des Massenträgheitsmomentes $J_{\rm R}$ der Umlenkrolle
- a) Stellen Sie die Differentialgleichung für die gedämpfte Schwingung der Kugel in Öl auf.
- b) Eine Messung der Frequenz der gedämpften Schwingung ergibt f_d = 1,275 Hz . Berechnen Sie daraus den Dämpfungsgrad D und die Viskosität η des Öls. Federkonstante k = 13 Nm⁻¹, Kugelmasse m = 200 g , Kugelradius R = 1,8 cm.
- 2) Erweitertes Modell: mit Berücksichtigung des Massenträgheitsmomentes $J_{\mathbb{R}}$ der Umlenkrolle vom Radius r.
- c) Stellen Sie die Differentialgleichung für das erweiterte Modell auf.
- d) Wie verändert sich das Resultat für die Viskosität im Vergleich zu dem einfachen Modell ? (Qualitative Antwort mit Begründung).

Sommersemester 2009		Blatt 2 (von 3)
Studiengang:	MB3 A / B	Semester 3
Prüfungsfach:	TM2, Teil 2: Schwingungslehre	Fachnummer: 3011 / 3012

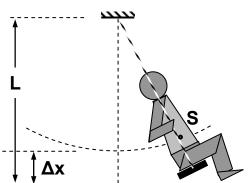
Aufgabe 2: Open Air Konzert

(20 Punkte)

Für ein Open-Air Konzert wurden zwei Lautsprecher im Abstand von $d=8\,\mathrm{m}$ und symmetrisch zu einer gedachten x-Achse auf einer Bühne aufgestellt. Nachfolgend ist anzunehmen, dass sie selbst keine Richtwirkung haben und ideale Punktquellen sind. Die gesamte umgebende Fläche (Zuschauerbereich, Wiese) bestehe aus idealen Schallabsorbern (siehe Skizze).

Ein Besucher B_1 steht im senkrechten Abstand b >> d zur Bühne – also **weit entfernt** - im Zuschauerbereich.

- a) Die baugleichen Lautsprecher werden phasengleich und parallel mit Wechselspannung der Frequenz f = 70 Hz angesteuert. Unter welchen Winkelrichtungen φ zur x-Achse im Intervall [-90°< φ < 90°] registriert B_1 Lautstärkemaxima?
- b) Unterhalb welcher Grenzfrequenz f_{min} existiert im genannten Winkelintervall nur noch ein Lautstärkemaximum?


Eine zweiter Besucher B_2 steht auf der x-Achse im Abstand b = 20 m zur Bühne.

- c) Welche Intensität hat der Schall am Ort von B₂, wenn der Pegel 103 dB beträgt?
- d) Welche Schallleistung gibt jeder Lautsprecher ab und welche elektrische Leistung nimmt er auf, wenn sein Wirkungsgrad 3 % beträgt?
- e) In welcher Entfernung b beträgt der Pegel erträgliche 60 dB (Zimmerlautstärke)?

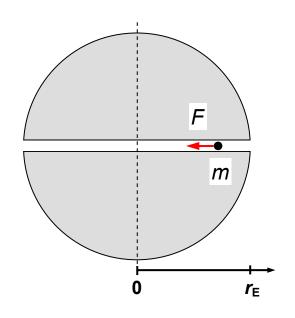
Sommersemester 2009		Blatt 3 (von 3)
Studiengang:	MB3 A / B	Semester 3
Prüfungsfach:	TM2, Teil 2: Schwingungslehre	Fachnummer: 3011 / 3012

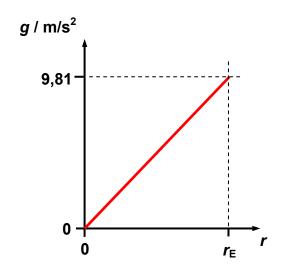
Aufgabe 3 Schaukel

(3 Punkte)

Eine Brettschaukel hat die Seillänge L = 1,5 m.

Im Sommer 2007 schaukelt ein Kind der Masse m_{07} = 12 kg darauf, sein Schwerpunkt befindet sich Δx = 10 cm über dem Brett. Die Schwingungsdauer hat den Wert T_{2007} .


Als das Kind im Sommer 2008 wieder schaukelt, hat seine Masse um 20% zugenommen, Δx ist gleich geblieben. Die Schwingungsdauer hat den Wert T_{2008} .


Das Kind ist als Massepunkt zu betrachten. Welchen Wert hat das Verhältnis T_{2007}/T_{2008} ?

<u>Aufgabe 4</u> Antipodenpendel

(7 Punkte)

Auf dem Weg von der Erdoberfläche zum Erdmittelpunkt nimmt die Gravitationsbeschleunigung auf eine Masse m gleichmäßig und linear auf den Wert Null ab (siehe Diagramm). Welche Periodendauer T hätte ein Körper, der in einem geraden, durch den Erdmittelpunkt gehenden Rohr, hin und her schwingt ? Reibung soll in dem Gedankenexperiment keine Rolle spielen, der Erdradius ist $r_{\rm E}$ = 6378 km.

