Hochschule Esslingen University of Applied Sciences

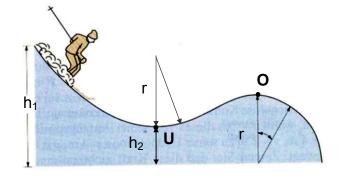
Fakultät	Grundlager
----------	------------

Sommersemeste	r 2008	Blatt 1 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

Gesamtpunktzahl: 60

Aufgabe 1: **Bahnkurve**

(4 Punkte)

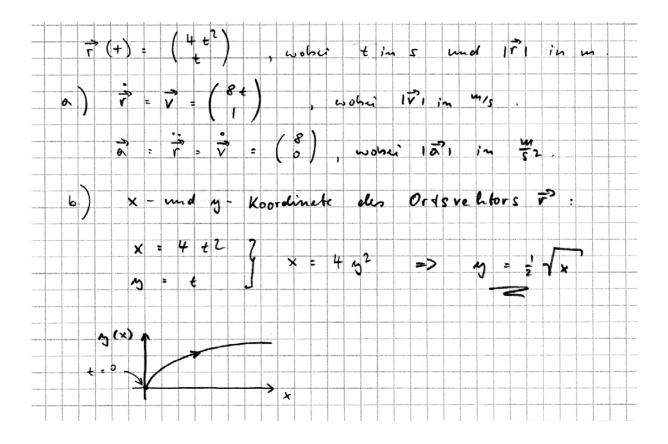

Der zeitabhängige Ortsvektor eines Teilchens soll in einem rechtwinkligen x,y-Koordinatensystem durch $\vec{r}(t) = \begin{pmatrix} p & t^2 \\ q & t \end{pmatrix}$ gegeben sein, wobei p = 4 m/s² und q = 1 m/s ist.

- a) Bestimmen Sie den Geschwindigkeits- und den Beschleunigungsvektor als Funktion der Zeit t.
- b) Geben Sie die Bahnkurve in der Form y = f(x) an und skizzieren Sie diese qualitativ für $t \ge 0$ im x,y-Koordinatensystem.

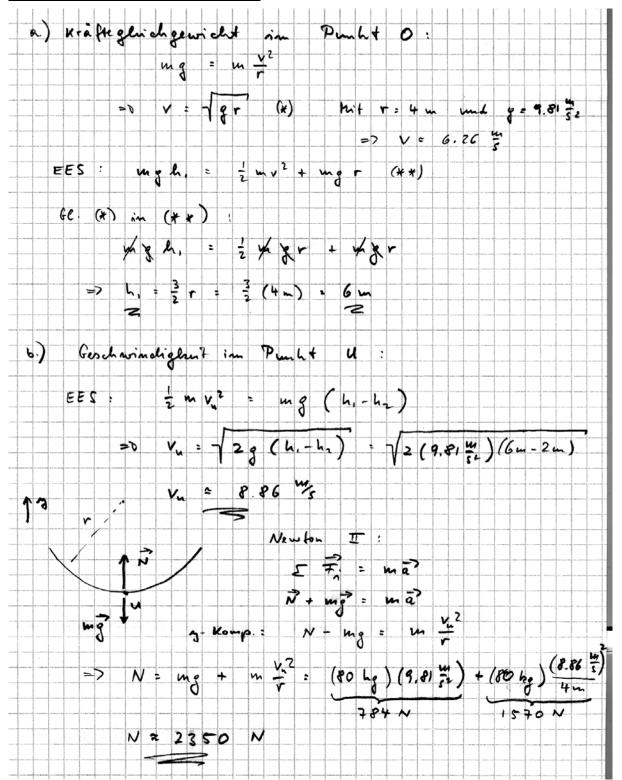
Aufgabe 2: Skifahrer

(9 Punkte)

Ein Skifahrer startet aus der Ruhe in einer Höhe h₁ und fährt durch eine Kuhle (Krümmungsradius r) auf eine Kuppe mit gleichem Krümmungsradius r (siehe Skizze). Die Reibung soll vernachlässigt werden.



Angaben:


$$r = 4 \text{ m}$$

 $h_2 = 2m$
 $m = 80 \text{ kg}$

- a) Bestimmen Sie die maximale Höhe h₁, bei der der Skifahrer im obersten Punkt O auf der Kuppe noch mit dem Schnee in Kontakt bleibt.
- b) Geben Sie Betrag und Richtung der Kraft an, die die Bahn im untersten Punkt U auf den Skifahrer ausübt.

Lösungsvorschlag zu Aufgabe 1:

Lösungsvorschlag zu Aufgabe 2:

Sommersemester	r 2008	Blatt 2 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

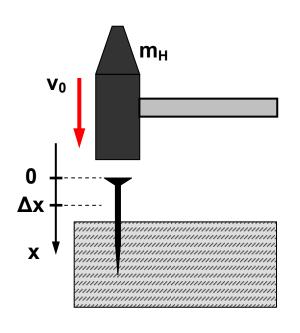
Aufgabe 3: Urlaubsflug

(15 Punkte)

Ein Verkehrsflugzeug für Kurz- und Mittelstrecken hat folgende technische Daten :

Abhebegeschwindigkeit $v_{start} = 280 \text{ km/h}$ Strecke bis zum Abheben $s_{start} = 2200 \text{ m}$ Vom Hersteller empfohlene Reisegeschwindigkeit $v_{opt} = 840 \text{ km/h}$

- a) Das Flugzeug startet aus der Ruhelage. Die Beschleunigung a_{start} sei während des gesamten Startvorgangs über die gesamte Strecke s_{start} hinweg konstant. Welchen Wert hat a_{start}? Nach welcher Zeit t_{start} hebt das Flugzeug ab?
- b) Die maximale Bremsverzögerung auf der Startbahn beträgt $a_B = 1 \text{ m/s}^2$. Das Flugzeug startet zum Zeitpunkt t = 0 s mit der Beschleunigung a_{start} am Beginn einer Bahn der Gesamtlänge 3500 m. Nach welcher Zeit t_x ist es zu spät, den Start abzubrechen, weil das Flugzeug dann nicht mehr vor dem Bahnende zum Halten gebracht werden kann? Welche Strecke s_x hat es dann zurückgelegt?
- c) Um die vom Hersteller empfohlene Reisegeschwindigkeit v_{opt} zu halten ist eine mechanische Antriebsleistung von 25000 kW erforderlich. Aufgrund der gestiegenen Kerosinpreise wird die Fluggeschwindigkeit um 5% verringert. Welche Reduktion bedeutet dies für die benötigte mechanische Antriebsleistung?


Hinweis: Die Luftwiderstandskraft F hängt von der Geschwindigkeit v ab, es gilt

$$F(v) = k v^2$$
 k ist eine Konstante

Aufgabe 4: Hammer

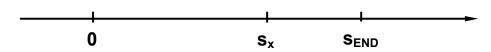
(7 Punkte)

Ein Hammer der Masse m_H trifft mit der Geschwindigkeit v_0 auf einen in einer Holzlatte steckenden Nagel. Während der Hammer den Nagelkopf berührt, dringt der Nagel eine Strecke $\Delta x = 3$ cm in das Holz ein und kommt dann zur Ruhe.

Angaben:

 $m_H = 400 \, \mathrm{g}$ Masse Hammer $v_0 = 6 \, \mathrm{m/s}$ Geschwindigkeit $\Delta x = 3 \, \mathrm{cm}$ Eindringtiefe

Die Reibungskraft zwischen Nagel und Holz sei konstant. Die Masse des Nagels ist zu vernachlässigen.


- a) Welche mittlere Kraft wirkt auf den Hammer?
- b) Wie wirkt sich eine Halbierung der Geschwindigkeit v_0 auf die Eindringtiefe Δx aus ?

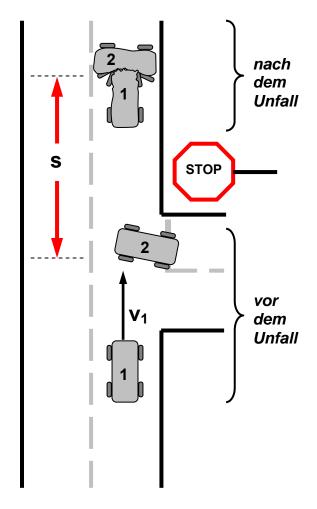
Sommersemester	r 2008	Blatt 2 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

Lösungsvorschlag Urlaubsflug

Autor H Käß

- a) Startgeschwindigkeit $v_{start} = 280 \text{ km/h} = 77,77 \text{ m/s}$ Weg-Zeit-Gesetz $s(t_{start}) = \frac{1}{2} a_{start} t^2_{start} = s_{start}$ (1) Geschwindigkeits-Zeit-Gesetz $v(t_{start}) = a_{start} t_{start} = v_{start}$ (2)
 - Aus (2) folgt $t_{start} = v_{start} / a_{start}$ in (1) eingesetzt $s_{start} = \frac{1}{2} v_{start}^2 / a_{start}$
 - Daraus folgt $a_{start} = \frac{1}{2} v_{start}^2 / s_{start} = 1,375 \text{ m/s}^2$
 - sowie $t_{\text{start}} = v_{\text{start}} / a_{\text{start}} = 56,57 \text{ s}$
- b) Der Beschleunigungsvorgang wird zur Zeit t_x an der Position s_x abgebrochen Das Flugzeug hat in diesem Moment die Geschwindigkeit $v(t_x) = a_{start} t_x$ Das Ende der Bahn bei $s = s_{END}$ wird zur Zeit t_x erreicht, dort ist v(t) = 0 m/s!!

- Weg-Zeit-Gesetz $s(t) = \frac{1}{2} a_{\text{start}} t^2 + v(t_x) t \frac{1}{2} a_B t^2 = s_{\text{END}}$ (3)
- Geschwindigkeits-Zeit-Gesetz $v(t) = a_{start} t_x a_B t = 0$ (4)
- Aus (4) folgt $t = t_x a_{start} / a_B$
- Damit wird (3) $\frac{1}{2} a_{\text{start}} t^2_x + a_{\text{start}} t_x t_x a_{\text{start}} / a_B \frac{1}{2} a_B (t_x a_{\text{start}} / a_B)^2 = s_{\text{END}}$ und es folgt $t^2_x = 2 s_{\text{END}} / (a_{\text{start}} + a^2_{\text{start}} / a_B) = 2143.9 \text{ s}^2$
- also $t_x = 46,3 s$
- und $s_x = \frac{1}{2} a_{start} t_x^2 = 1473,8 m$
- c) Reibungskraft $F(v) = k v^2$ k = const Reibungsleistung für $v = v_0$ $P_0 = F(v_0) v_0 = k (v_0)^3$ $E(v_0)^3 = F(v_0) v_1 = k (v_1)^3 = k (0.95 v_0)^3$ $E(v_0)^3 = 0.95^3 P_0 = 0.857 P_0$ $E(v_0)^3 = 0.95^3 P_0 = 0.857 P_0$ $E(v_0)^3 = 0.95^3 P_0 = 0.857 P_0$


Lösungsvorschlag Hammer

Autor H Käß

- a) Weg-Zeit-Gesetz (Bremszeit t_B) $s(t_B) = v_0 t_B \frac{1}{2} a_B t_B^2 = \Delta x$ (1) Geschwindigkeits-Zeit-Gesetz $v(t_B) = v_0 a_B t_B = 0$ (2) Aus (2) $t_B = v_0/a_B$ damit wird (1) $\Delta x = \frac{1}{2} v_0^2 / a_B$
 - Es folgt die mittlere Bremsbeschleunigung $a_B = \frac{1}{2} v_0^2 / \Delta x = 600 \text{ m/s}^2$ und die mittlere Kraft wird so $F_m = m \ a_B = 240 \ N$
- b) Die Eindringtiefe ist $\Delta x_0 = \frac{1}{2} v_0^2 / a_B$ Halbe Geschwindigkeit $v_1 = \frac{1}{2} v_0$ und somit $\Delta x_1 = \frac{1}{2} v_1^2 / a_B = \frac{1}{4} \Delta x_0$

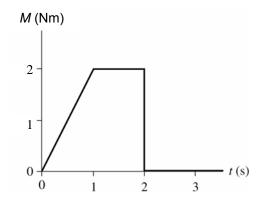
Sommersemester	2008	Blatt 4 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

Aufgabe 5: Unfallgutachten

(8 Punkte)

Schwerer Unfall in der Innenstadt:

Bei Einbiegen aus einer Seitenstraße nimmt Wagen 2 dem sich auf der Hauptstraße nähernden Wagen 1 die Vorfahrt. Die Wagen stoßen zentral zusammen, verkeilen sich ineinander und rutschen mit blockierten Rädern noch die Strecke s = 17 m gemeinsam weiter, bevor sie zum Stillstand kommen (siehe Skizze). Die Dauer des Zusammenstoßes kann gegen die nachfolgende Zeit des Rutschens vernachlässigt werden.


- a) Berechnen Sie die Geschwindigkeit v₁ von Wagen 1 vor dem Unfall.
- b) Welcher Energiebetrag wird zur Deformation der beiden Wagen verwendet?

Angaben:

Gleitreibungszahl zwischen Wagen und Straße $\mu_{gl} = 0.6$ Masse Wagen 1 $m_1 = 1900 \text{ kg}$ Masse Wagen 2 $m_2 = 1050 \text{ kg}$

Aufgabe 6: Drehmoment

(7 Punkte)

Auf einen Körper mit dem Massenträgheitsmoment $J = 4 \text{ kg m}^2$ wird ein zeitabhängiges Drehmoment M ausgeübt (siehe Skizze).

- a) Erklären Sie kurz (in ein oder zwei Sätzen) den Zusammenhang zwischen dem Schaubild und dem Drehimpuls des Körpers.
- b) Welche Winkelgeschwindigkeit hat der Körper nach t = 3 s, wenn er anfangs in Ruhe war?

Sommersemester	2008	Blatt 4 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

Lösungsvorschlag Unfallgutachten

Autor H Käß

- a) Der Bewegungsvorgang besteht aus zwei Teilen
 - (1) Vollkommen unelastischer Stoß zwischen den beiden Autos
 - (2) Umwandlung der kinetischen Restenergie in Reibungsarbeit

Für den Stoß gilt der Impulserhaltungssatz $m_1 v_1 = (m_1 + m_2) u$ (1)

Für den Reibungsvorgang gilt $F_{reib} s = \frac{1}{2} (m_1 + m_2) u^2$ (2)

mit $F_{reib} = (m_1 + m_2) g \mu_{gl}$

Hier ist u die Geschwindigkeit der ineinander verkeilten Wagen nach dem Stoß F_{reib} bezeichnet die Gleitreibungskraft zwischen Wagen und Straße

Kombination von (1) und (2) ergibt $v_1^2 = 2 g \mu_{gl} s (m_1 + m_2)^2 / m_1^2$

also $v_1 = \sqrt{2 g \mu_{gl} s} (m_1 + m_2)/m_1$

= 21,96 m/s ≈ 79 km/h

b) Kinetische Energie vor dem Stoß

 $E_{kin,vor}$ = $\frac{1}{2}$ m₁ v₁² = $\frac{1}{2}$ 1900 kg 21,96² m²/s² = 458,3 kJ

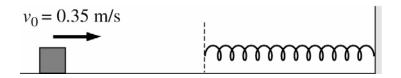
Kinetische Energie nach dem Stoß

 $E_{kin,nach}$ = $\frac{1}{2}$ (m₁ + m₂) u² = $\frac{1}{2}$ m₁ v₁² m₁ / (m₁ + m₂) = $E_{kin,vor}$ 0,6441 = 295,2 kJ

Die Differenz dieser beiden Werte ist der für die Deformation verwendete Energiebetrag

 $\Delta E = E_{kin,vor} - E_{kin,nach} = 163,1 kJ$

Lösungvorschlag zu Aufgabe 6:

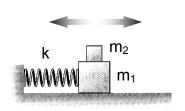


Sommersemester	2008	Blatt 4 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

Aufgabe 7: Klotz 1

(4 Punkte)

Ein Klotz mit der Masse m = 500 g rutscht reibungsfrei auf einer horizontalen Unterlage mit der Geschwindigkeit v_0 auf eine Feder mit Federkonstante k = 50 N/m. Die Feder wird zunächst zusammengedrückt und schiebt dann den Klotz solange in die entgegengesetzte Richtung, bis der Kontakt wieder verloren geht.

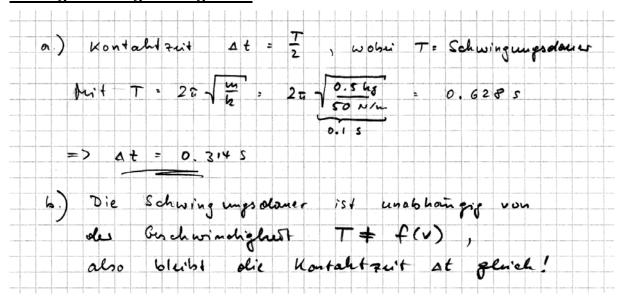


- a) Bestimmen Sie die Kontaktzeit des Klotzes mit der Feder.
- b) Wie ändert sich die Antwort in a), wenn der Klotz mit einer doppelt so großen Anfangsgeschwindigkeit auf die Feder trifft (kurze Begründung)?

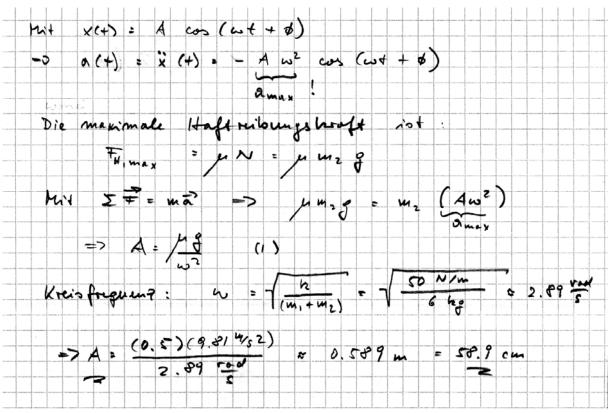
Aufgabe 8: Klotz 2

(6 Punkte)

Ein Klotz mit der Masse m₁ ist an einer Feder befestigt und rutscht reibungsfrei auf einer horizontalen Unterlage. Ein zweiter Klotz mit Masse m₂ sitzt auf dem ersten und wird nur durch die Haftreibungskraft gehalten (siehe Skizze).



Angaben:


$$m_1 = 5 \text{ kg}$$

 $m_2 = 1 \text{ kg}$
 $k = 50 \text{ N/m}$
 $\mu_H = 0.5$

Mit welcher maximalen Amplitude kann das System schwingen, ohne dass der obere Klotz verrutscht?

Lösungvorschlag zu Aufgabe 7:

Lösungvorschlag zu Aufgabe 8:

