Hochschule Esslingen University of Applied Sciences

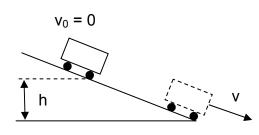
Wintersemester	2007 / 2008	Blatt 1 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

Gesamtpunktzahl: 60

Aufgabe 1: (2 Punkte)

Ein Wagen wird in der Höhe h aus der Ruhe losgelassen und rollt reibungsfrei eine schiefe Ebene hinunter. Am Ende der schiefen Ebene hat der Wagen die

Geschwindigkeit v (s. Skizze).



Aus welcher Höhe müsste der Wagen starten, damit die Geschwindigkeit am Ende 2v wäre?

- a) 1.41 h
- b) 2 h
- c) 3 h

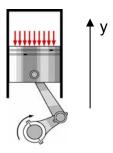
- d) 4 h
- e) 6 h

(Begründen Sie Ihre Antwort)

Aufgabe 2: (4 Punkte)

Die Kolbenbewegung in einem Zylinder kann näherungsweise mit der Formel $y(t) = y_m \cos(\omega t)$ beschrieben werden. Die maximale Amplitude sei $y_m = 4$ cm und die Drehzahl n = 5000 U/min.

Berechnen Sie die Durchschnittsgeschwindigkeit \overline{v} (in m/s) im Zeitintervall 1 ms \leq t \leq 2 ms.

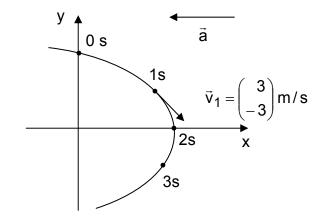


Aufgabe 3: (4 Punkte)

Unter dem Einfluss einer konstanten Beschleunigung a bewegt sich ein Körper auf einer zweidimensionalen Bahnkurve. Die Position des Körpers im Zeitintervall 0s < t < 3s ist in äquidistanten

Zeitabständen von 1s auf der Bahn markiert (s. Skizze). Außerdem ist der Geschwindigkeitsvektor \vec{v}_1 gegeben.

- a) Bestimmen Sie den Geschwindigkeitsvektor \vec{v}_2 des Körpers zum Zeitpunkt t = 2s.
- b) Geben Sie den Beschleunigungsvektor a an.



Hochschule Esslingen

University of Applied Sciences

Aufgabe 1

Lösungsvorschlag (Autor H Käß)

Für den Vorgang gilt der mechanische Energieerhaltungssatz.

potentielle => kinetische Energie, keine Reibung : m g h = $\frac{1}{2}$ m v² daraus folgt h = v² / (2 g)

Höhe h_1 für Erreichen doppelter Geschwindigkeit 2v $h_1 = (2v)^2 / (2g) = 4h$

Aufgabe 2

Lösungsvorschlag (Autor H Käß)

Die Durchschnittsgeschwindigkeit (mittlere Geschwindigkeit) v_m ist gleich dem Gesamtweg Δs pro Zeitintervall Δt

Winkelgeschwindigkeit $\omega = 2 \pi f = 2 \pi 5000 / (60s) = \pi 166,6 \text{ rad/s} = 523 \text{ rad/s}$

Position zur Zeit 1 ms y_1 (1 ms) = $y_m \cos(2 \pi 5 / 60) = y_m \cos(\pi/6) = y_m \frac{1}{2} \sqrt{3}$

Position zur Zeit 2 ms y_2 (2 ms) = $y_m \cos(2 \pi 10 / 60) = y_m \cos(\pi/3) = y_m / 2$

Gesamtweg $\Delta s = y_2 - y_1 = y_m (\frac{1}{2} - \frac{1}{2} \sqrt{3}) = -y_m 0,366 = -0,0146 \text{ m}$

Mittlere Geschwindigkeit $v_m = \Delta s / \Delta t = -0.0146 \text{ m} / 10^{-3} \text{ s} = -14.6 \text{ m/s}$

Aufgabe 3

Lösungsvorschlag (Autor H Käß)

Die konstante Beschleunigung wirkt in die negative x-Richtung, in y-Richtung erfolgt keine Beschleunigung und daher auch keine Änderung der Geschwindigkeit.

a) Geschwindigkeitsvektor

Die Geschwindigkeit v_y in y-Richtung ist konstant: $v_y = v_{1y} = const = v_{2y} = -3m/s$

Der Geschwindigkeitsvektor liegt tangential zur Bahnkurve. Zum Zeitpunkt t = 2 s ist demnach die Geschwindigkeitskomponente in x-Richtung gleich Null : $\mathbf{v}_{2x} = \mathbf{0}$ m/s

Also wird der Geschwindigkeitsvektor zur Zeit t = 2s $v_2 = (0; -3) \text{ m/s}$

b) Beschleunigungsvektor

Beschleunigung a ist gleich Geschwindigkeitsänderung Δv pro Zeiteinheit Δt

In y-Richtung erfolgt keine Beschleunigung, also $a_y = 0 \text{ m/s}^2$

Geschwindigkeit in x-Richtung zur Zeit t = 1 s $v_x (1s) = 3 m/s$ Geschwindigkeit in x-Richtung zur Zeit t = 2 s $v_x (2s) = 0 m/s$

Da $\Delta t = 1$ s ist, folgt daraus $(v_x (2s) - v_x (1s)) / \Delta t = a_x = -3 \text{ m/s}^2$

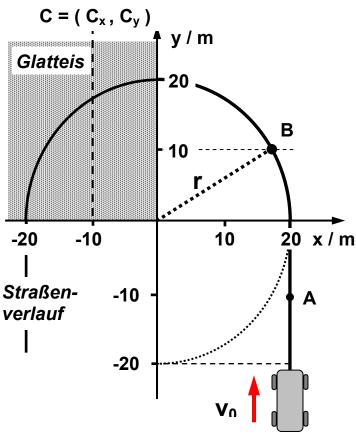
Also wird der konstante Beschleunigungsvektor a $a = (-3; 0) \text{ m/s}^2$

Hochschule Esslingen

University of Applied Sciences

Wintersemester	2007 / 2008	Blatt 2 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

<u>Aufgabe 4:</u> Beschleunigung



(6 Punkte)

konstanter Ein Auto fährt mit Bahngeschwindigkeit $v_0 = 45$ km/h auf einer horizontalen Straße, die eine U-Kurve mit Radius r beschreibt (siehe Skizze). Nach der Hälfte der Kurve beginnt ein Bereich, in dem Straße und vollkommen Umgebung von ideal glattem Eis bedeckt sind, Haft- und Gleitreibung zwischen Rädern und Eis sind hier gleich Null.

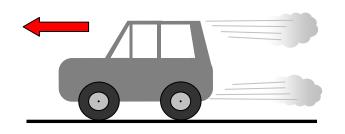
- a) Skizzieren Sie die Bahn des Autos in dem von Glatteis bedeckten Bereich.
- b) Geben Sie Richtung und Betrag der in den Punkten A, B und C = (-10 m, C_y) auf das Auto wirkenden Beschleunigung an.

Hinweis: Die x-Koordinate von Punkt C beträgt $C_x = -10$ m, seine y-Koordinate C_y ist nicht gegeben.

Aufgabe 5: Fahrverhalten

(9 Punkte)

Das Beschleunigungsverhalten eines Autos auf horizontaler Strecke ist zu berechnen.



<u>Angaben</u>:

 m_L = 1000 kg Leermasse Auto m_p = 70 kg Masse einer Person r_A = 32 cm Radius Antriebsrad

Roll- und Luftreibung werden vernachlässigt. Die Last verteilt sich gleichmäßig auf die vier Räder des Autos.

- a) Das mit einer Person besetzte Auto soll aus dem Stand in 10 s konstant auf 120 km/h beschleunigt werden. Welche mittlere und welche maximale Leistung muss der Motor dafür an die Räder abgeben ? Skizzieren Sie den Verlauf der Leistung über der Zeit.
- b) Der Antrieb erfolgt über zwei Räder. Welches Drehmoment pro Rad ist erforderlich?
- c) Welchen Mindestwert muss die Haftreibungszahl zwischen Reifen und Straße haben?

Aufgabe 4 Beschleunigung

H. Käß



a) Bahn

Das Auto erreicht den von Glatteis bedeckten Bereich im Punkt (0m, 20m). Von da an bewegt es sich auf gerader Bahn in die negative x-Richtung weiter, die y-Koordinate bleibt konstant bei 20 m.

b) Beschleunigungen

In A <u>und</u> C: **keine Beschleunigung** (die Geschwindigkeit ist konstant)

In B: **Zentripetalbeschleunigung** a_Z für Kreisbewegung mit konstanter Geschwindigkeit v = 45 km /h

Betrag :
$$a_Z = v^2 / r$$

 $a_Z = (45000 \text{ m} / 3600 \text{ s})^2 / 20 \text{ m}$
 $= (12.5 \text{ m/s})^2 / 20 \text{ m} = 7.81 \text{ m/s}^2$

Richtung : Der Vektor az zeigt zum **Mittelpunkt der Kreisbahn**

Richtung quantitativ:

für den Winkel φ gilt der Vektor **a**z ist damit

$$\sin \varphi = 10/20 = 0.5 \text{ also } \varphi = 30^{\circ}$$

 $a_z = a_z (-\cos \varphi; -\sin \varphi) = (-6.76; -3.90) \text{ m/s}^2$

Aufgabe 5 Fahrverhalten

H. Käß

a) Die mittlere Leistung P_m ist gleich der zugeführten Energie ΔE pro Zeiteinheit Δt :

$$\Delta E = \frac{1}{2} \text{ m v}^2 = \frac{1}{2} (m_L + m_P) \text{ v}^2 = \frac{1}{2} 1070 \text{ kg} (120000 \text{ m} / 3600 \text{ s})^2 = 594,4 \text{ kJ}$$

 $P_m = \Delta E / \Delta t = 594,4 \text{ kJ} / 10 \text{ s} = 59,44 \text{ kW}$

Die Leistung steigt **linear** mit der Zeit. Zu Beginn (0 s) gibt der Motor die momentane Leistung $P_0 = 0$ W ab, am Ende (10 s) die momentane Leistung P_{max} . Es ist :

$$P_{m} = \frac{1}{2} (P_{0} + P_{max})$$

also
$$P_{max} = 2 P_m = 118,88 kW$$

b) Die konstante Beschleunigung a beträgt $a = \Delta v / \Delta t = 33,33 \text{ m/s} / 10 \text{ s} = 3,33 \text{ m/s}^2$ Diese erfordert eine konstante Kraft $F_B = m \ a = 1070 \text{ kg } 3,33 \text{ m/s}^2 = 3566,7 \text{ N}$ Drehmoment M pro Rad also $M = \frac{1}{2}F_B r = 1783 \text{ N } 0,32 \text{ m} = 570,7 \text{ Nm}$

c) Ein Rad trägt ein Viertel der gesamten Gewichtskraft F_G des Autos. Die Normalkraft F_N pro Rad ist demnach

$$F_N = \frac{1}{4} (m_L + m_P) g = \frac{1}{4} 1070 \text{ kg } 9.81 \text{ m/s}^2 = 2624.2 \text{ N}$$

Die Haftreibungskraft F_H pro Rad muss mindestens ½ F_B = 1783,33 N betragen. Aus der Grenzbedingung F_H = μ_H F_N folgt μ_H = F_H / F_N = **0,68**

Hochschule Esslingen

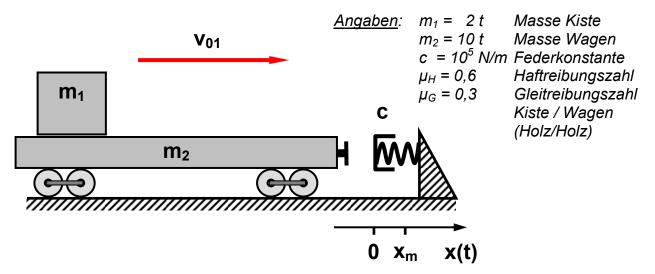
University of Applied Sciences

Wintersemester	2007 / 2008	Blatt 3 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

Aufgabe 6: Güterwagen

(15 Punkte)

Eine Kiste der Masse m_1 steht auf einem Güterwagen der Masse m_2 . Der Wagen stößt elastisch mit der Geschwindigkeit v_{01} gegen einen Prellbock. Dessen Verhalten während des Stoßvorgangs wird durch ein lineares Federgesetz mit der Konstanten c beschrieben. Die Räder des Wagens bewegen sich reibungsfrei. Die gesamte Anordnung ist horizontal, daher sind nachfolgend nur Kräfte und Bewegungen in x-Richtung zu betrachten.



- a) Bei dem Stoßvorgang mit der Geschwindigkeit v_{01} kommt die Kiste nicht ins Rutschen. Skizzieren Sie den Verlauf der während des Stoßes auf die Masse m_1 wirkenden Kraft über dem Weg x.
- b) Welche Geschwindigkeit v_{01} darf der Wagen vor dem Stoß höchstens haben, damit die Kiste der Masse m_1 nicht verrutscht?
- c) Der Wagen fährt mit der Geschwindigkeit v_{02} = 3 m/s gegen den Prellbock. Während des Stoßvorgangs verrutscht die Kiste um 1,5 m . Mit welcher Geschwindigkeit bewegt sich der Wagen nach dem Stoß ?

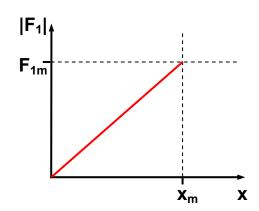
Hochschule Esslingen University of Applied Sciences

Aufgabe 6 Güterwagen

H. Käß

a) Diagramm für den Betrag F_1 der auf die Kiste der Masse m_1 wirkenden Kraft als Funktion der Wegkoordinate x. Die Kraft steigt **linear** mit x (Federgesetz!!) bis zum **Maximalwert** F_{1m} für die Auslenkung x_m .

Die Kraft ist der Auslenkung gerade entgegen gerichtet, in der Skizze also jeweils in die **negative** x-Richtung orientiert.



b) Damit die Kiste nicht verrutscht, darf die Maximalkraft F_{1m} auf sie nicht größer als die maximale Haftreibungskraft F_{Hmax} zwischen Kiste und Wagen werden. Es gilt :

$$F_{1m} \le F_{Hmax} = \mu_H F_N = \mu_H F_G = \mu_H m_1 g = 11772 N$$

Dies ergibt direkt die maximale Beschleunigung a_{1m}, die auf die Kiste wirken darf :

$$a_{1m} = F_{1m} / m_1 = \mu_H g = 0.6 g$$
 = 5,886 m/s²

Die Auslenkung x der Feder durch den Anprall des Wagens ergibt eine auf Wagen und Kiste zusammen einwirkende Kraft $F_{\alpha es}$, die aus dem Federgesetz folgt :

$$F_{ges}(x) = c x$$

 F_{ges} beschleunigt die Gesamtmasse aus Kiste (m_1) und Wagen (m_W) mit a_{ges} :

$$F_{\text{ges}} = (m_1 + m_W) a_{\text{ges}}$$

Im Grenzfall maximaler Auslenkung x_m wird $F_{ges}(x_m) = F_{1m} = c x_m$ und daher wird

$$a_{ges,m} = F_{1m} / (m_1 + m_W) = c x_m / (m_1 + m_W)$$
 ($F_{1m} = 70632 N$)

Dieser Maximalwert ages,m darf nicht größer als a_{1m} werden, im Grenzfall gilt also :

$$a_{1m} = \mu_H g = c x_m / (m_1 + m_W) = a_{ges,m}$$

 $x_m = \mu_H (m_1 + m_W) g / c = (0.6 \cdot 12000 \text{ kg } 9.81 \text{ m/s}^2) / 10^5 \text{ N/m} = 0.706 \text{ m}$

Die zugehörige Anfangsgeschwindigkeit v₀₁ folgt direkt aus dem Energieerhaltungssatz

$$E_{kin}$$
 = $\frac{1}{2}$ (m₁ + m_W) v_{01}^2 = $\frac{1}{2}$ c x_m^2 = E_{elast}
 v_{01}^2 = c x_m^2 / (m₁ + m_W)
 v_{01} = **2,039 m/s**

c) Direkte Rechnung über den Energiesatz. Die Gleitreibungsarbeit W_R beträgt

$$W_R = F_R s = \mu_G F_N s = \mu_G m_1 g s = 0.3.2000 kg 9.81 m/s^2 1.5 m = 8829 Nm$$

Kinetische Energie vor dem Stoß

$$E_{kin,vor} = \frac{1}{2} (m_1 + m_W) v_{02}^2 = \frac{1}{2} 12000 \text{ kg } 9 \text{ m}^2 / \text{s}^2 = 54000 \text{ Nm}$$

Kinetische Energie nach dem Stoß somit

$$E_{kin,nach} = E_{kin,vor} - W_R = 45171 \text{ Nm} = \frac{1}{2} (m_1 + m_W) v_{end}^2$$

Die Endgeschwindigkeit wird
$$v_{end}^2 = 2 E_{kin,nach} / (m_1 + m_W)$$
 $v_{end} = 2,74 m/s$

Hochschule Esslingen

University of Applied Sciences

Wintersemester	2007 / 2008	Blatt 4 (von 4)
Studiengang:	FZB A&B	Semester 1
Prüfungsfach:	Naturwissenschaftliche Grundlagen	Fachnummer: 1091

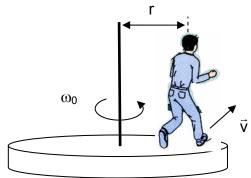
Aufgabe 7: (8 Punkte)

Ein Junge (m = 40 kg) steht im Abstand r = 1.3 m zur reibungsfrei gelagerten Drehachse auf einem Karussell (Massenträgheitsmoment $J = 250 \text{ kg m}^2$), das sich in 5s einmal um seine Achse dreht.

a) Wie groß ist die Bahngeschwindigkeit v_0 des Jungen auf dem Karussell?

Der Junge springt nun in tangentialer Richtung vom Karussell herunter (siehe Skizze). Das Karussell dreht sich danach mit ω_F = 0.8 rad/s.

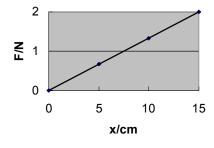
b) Mit welcher Geschwindigkeit v ist der Junge vom Karussell heruntergesprungen?

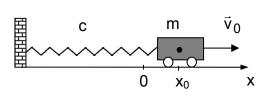


Aufgabe 8: (12 Punkte)

Die Rückstellkraft einer Feder wurde als Funktion der Auslenkung gemessen (siehe linkes Bild). Danach wird ein Wagen mit der Masse m = 0.2 kg an der Feder befestigt und in reibungsfreie Schwingungen versetzt (siehe Bild rechts).

Die Anfangsbedingungen lauten $x_0 = 2.1$ cm und $v_0 = 0.48$ m/s.





- a) Bestimmen Sie die Federkonstante c.
- b) Wie groß ist die mechanische Gesamtenergie am Anfang?
- c) Welche Amplitude A hat die Schwingung?
- d) Bestimmen Sie Nullphasenwinkel ϕ und Kreisfrequenz ω , wenn die Bewegungsgleichung durch die Funktion $x(t) = A \cos[\omega t + \phi]$ beschrieben wird.

Hochschule Esslingen

University of Applied Sciences

Aufgabe 7

Lösungsvorschlag (Autor H Käß)

a) Bahngeschwindigkeit $v_0 = r \omega_0 = r 2 \pi / T = 2 \pi 1,3 m / 5 s = 1,634 m/s$

b) Drehimpulserhaltungssatz

Vorher Karussell $L_{Kv} = J \omega_0 = 250 \text{ kgm}^2 1,257 \text{ rad /s} = 314,16 \text{ Nms}$

Junge $L_J = m r^2 \omega_0 = 40 \text{ kg } 1,69 \text{ m}^2 1,257 \text{ rad /s} = 84,95 \text{ Nms}$

insgesamt also $L_{vor} = L_{Kv} + L_{Jv} = 399,11 \text{ Nms}$

Nachher Karussell $L_{Kn} = J \omega_E = 250 \text{ kgm}^2 0.8 \text{ rad /s} = 200 \text{ Nms}$

Junge $L_{Jn} = m v_E r$ ($v_E = tangentiale Geschwindigkeit$)

insgesamt $L_{nach} = L_{Kn} + L_{Jn}$

Es ist $L_{vor} = L_{nach}$

also $L_{Jn} = L_{Kv} + L_{Jv} - L_{Kn} = 199,11 \text{ Nms}$

Daraus folgt sofort $v_E = L_{Jn} / (m r) = 199,11 \text{ Nms} / (40 \text{ kg} 1,3 \text{ m}) = 3,829 \text{ m/s}$

Die Absprunggeschwindigkeit des Jungen relativ zum Karussell betrug also

$$v = v_F - v_0 = 2,195 \text{ m/s}$$

Aufgabe 8

Lösungsvorschlag (Autor H Käß)

a) Die Federkonstante c der Anordnung beträgt

c =
$$\Delta F / \Delta x = 2 N / 0.15 m = 13.33 N/m$$

b) Mechanische Anfangsenergie $\mathsf{E}_{\mathsf{ges}}$

E_{ges} = E_{elast} + E_{kin} =
$$\frac{1}{2}$$
 c x_0^2 + $\frac{1}{2}$ m v_0^2
= $\frac{1}{2}$ 13,33 N/m $(0,021 \text{ m})^2$ + $\frac{1}{2}$ 0,2 kg 0,48² m² / s² = 0,00294 Nm + 0,02304 Nm = **0,0260 Nm**

c) Die Amplitude A folgt aus der Energieerhaltung

$$E_{ges} = \frac{1}{2} c A^2$$

 $A^2 = 2 E_{ges} / c$
 $A = 0.0624 m$

d) Die Kreisfrequenz ω folgt aus $\omega^2 = c/m = (13,33 \text{ N/m}) / 0,2 \text{ kg} = 66,66 \text{ rad}^2/\text{s}^2$

 ω = **8,1650** rad/s (=1,2995 Hz)

Die Weg-Zeit-Funktion lautet $x(t) = A \cos(\omega t + \Phi)$ Die Geschwindigkeits-Zeit Funktion $v(t) = -A \omega \sin(\omega t + \Phi)$

Demnach $x(0) = A \cos (\Phi) = x_0$ $v(0) = -A \omega \sin (\Phi) = v_0$

Also $\tan (\Phi) = -v_0 / (x_0 \omega) = -2,800$

 $\Phi = -70.34^{\circ}$