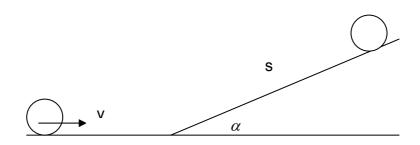
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

Wintersemester	2003/04	Zahl der Blätter: 4 Blatt 1
Studiengang:	CI,BT	Semester 1
Prüfungsfach:	Physik 1	Fachnummer:1040,1044
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 60 min.

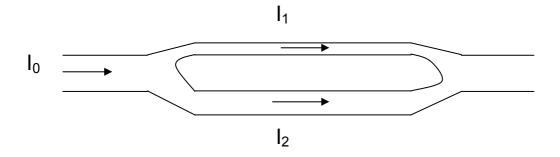

Aufgabe1 (17 Punkte):

- a)Wie groß ist die Winkelgeschwindigkeit des Minutenzeigers einer klassischen Analoguhr? Geben Sie das Ergebnis in rad/s an.
- b)Ein Körper gleitet reibungsfrei aus der Ruhe heraus auf einer schiefen Ebene. Der Neigungswinkel gegen die Horizontale $\alpha = 30^{\circ}$. Welche Geschwindigkeit v erreicht der Körper nach t = 2,5 Sekunden? (Erdbeschleunigung g = 9,81m/s²)
- c)Auf welche Höhe h ist eine Wassermenge von 6000 m³ zu pumpen, wenn ihre potentielle Energie um 850 kWh zunehmen soll $(\rho_{H2O} = 10^3 kg/m^{-3})$?
- d)Ein Straßenbahnwagen der Masse m_1 =4,5 t fährt mit v_1 =2 m/s gegen einen ruhenden Wagen von der Masse m_2 =2,5 t, wobei die Kupplung sofort einklinkt. Mit welcher Geschwindigkeit v_2 fahren die beiden Wagen weiter?
- e)Mit welcher Geschwindigkeit tritt ein Wasserstrahl aus der Öffnung eines Behälters aus, der unter einem Überdruck von 1,2 MPa stehendes Wasser enthält? (Ausflusszahl $\mu = 0.7$)
- f)Geben Sie die Definition und SI-Einheiten für die kinematische Viskosität v an.
- g)Ein mathematisches Pendel der Pendellänge 150cm hat auf dem Mond die Schwingungsdauer T = 6,04 s. Wie groß ist die Fallbeschleunigung auf dem Mond?
- h)lm Kohlenmonoxid (CO) schwingen die beiden Atome mit einer Frequenz von $\nu = 6 \cdot 10^{13} \, Hz$.gegeneinander. Welchem Bereich des Spektrums der elektromagnetischen Wellen ordnen Sie diesen Frequenzen zu?

Wintersemester	2003/04	Blatt 2
Studiengang:	CI,BT	Semester 1
Prüfungsfach:	Physik 1	Fachnummer:1040,1044

Aufgabe 2 (14 Punkte):

Eine Kugel der Masse m=80 Gramm und dem Radius r=5 cm rollt mit der Geschwindigkeit v=2 m/s auf eine schiefe Ebene mit dem Neigungswinkel $\alpha=30^\circ\,$ zu. Das Massenträgheitsmoment der Kugel ist $J_{\scriptscriptstyle S}=\frac{2}{5}m\cdot r^2\,$, die Erdbeschleunigung g=9,81m/s². Die Rollreibung ist vernachlässigbar.

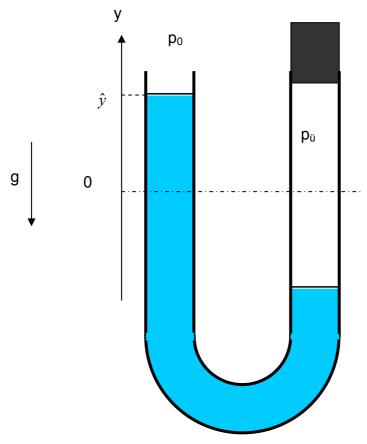

a)Wie groß ist die kinetische Gesamtenergie der Kugel in der Ebene und welchen Anteil hat daran die Rotationsenergie?

b)Wie weit rollt die Kugel die schiefe Ebene hinauf (Rollen ohne zu gleiten). Geben Sie den auf der schiefen Ebene zurückgelegten Weg s an.

c)Welchen Drehimpuls hat die Kugel am Anfang? Stellen Sie den zeitlichen Verlauf des Drehimpulses während des gesamten Vorganges grafisch dar (qualitativ) und diskutieren Sie die Kurve.

Wintersemester	2003/04	Blatt 3
Studiengang:	CI,BT	Semester 1
Prüfungsfach:	Physik 1	Fachnummer:1040,1044

Aufgabe 3 (13 Punkte):


Eine **laminar** strömende, inkompressible Flüssigkeit fließt in einem Rohr, dass sich auf einem Teilstück in zwei Rohre gleicher Länge verzweigt (s. Abbildung). In den beiden Rohren, deren Durchmesser sich wie $d_1:d_2=1:2$ verhalten, teilt sich der Volumenstrom I_0 in die beiden Teilströme I_1 und I_2 .

- a)Geben Sie das Verhältnis der Volumenströme I₁:I₂ an.
- b)Wie verhalten sich die Stömungswiderstände R₁:R₂ in der beiden Rohren?
- c) Bestimmen Sie das Verhältnis der mittleren Strömungsgeschwindigkeiten $v_1:v_2$ in den beiden Teilströmen I_1 und I_2 .
- d)In welchem der beiden Teilströme I_1 und I_2 ist bei Erhöhung des Volumenstromes I_0 zuerst mit einem Übergang von laminarer in turbulente Strömung zu rechnen (Begründung!)?

Wintersemester	2003/04	Blatt 4
Studiengang:	CI,BT	Semester 1
Prüfungsfach:	Physik 1	Fachnummer:1040,1044

Aufgabe 4 (16 Punkte):

In einem U-Rohr, Innenradius r=1cm, befindet sich Quecksilber (ρ =13,6 $g\cdot cm^{-3}$). Infolge eines Überdrucks $p_{\ddot{u}}$ =0,12 bar auf der rechten Seite ist die Flüssigkeit auf beiden Seiten um den Betrag \hat{y} von der Ruhelage entfernt. Auf der linken Seite ist das Rohr offen, der Umgebungsdruck p_0 =1bar. Zur Zeit t=0 wird nun der Verschluss geöffnet, und die Quecksilbersäule mit der Länge I=30cm beginnt zu schwingen.

a)Berechnen Sie die maximale Amplitude \hat{y} für die ungedämpfte Schwingung.

b)Stellen Sie die Bewegungsgleichung für die Quecksilbersäule auf und berechnen Sie daraus ω_0 und die Schwingungsdauer T_0 .

c)Wie groß ist die Beschleunigung a zur Zeit t=0, und welche maximale Geschwindigkeit erreicht die Säule?

d)Durch die innere Reibung in der Flüssigkeit ist der Schwingungsvorgang gedämpft. Bestimmen Sie die Abklingkonstante δ und den Dämpfungsgrad D. Hinweis: laminare Rohrströmung, $\eta = 15.7 \cdot 10^{-4} \, Pa \cdot s$.

Wintersemester	2003/04	Blatt 4
Studiengang:	CI,BT	Semester 1
Prüfungsfach:	Physik 1	Fachnummer:1040,1044