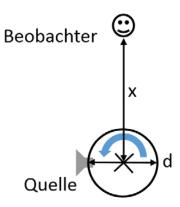

Fakultät Grundlagen

Sommersemester 2016		Blatt 1 (von 4)
Studiengang:	TIB2	Semester 2
Prüfungsfach:	Physik 2	Fachnummer: 1052010
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

Gesamtpunktzahl: 81

Ein Kondensator ($C = 1 \mu F$), eine Spule ($L = 10 \mu H$) und ein Schalter sind entsprechend des Schaltbildes miteinander verbunden (siehe Abbildung). Zu Beginn (t = 0 s) ist der Kondensator auf die Spannung U(0) = 10 V geladen und der Schalter ist offen. Durch Schließen des Schalters entlädt sich der Kondensator über die Spule.

- a) Welche Ladung Q_m ist zu Beginn auf dem Kondensator gespeichert?
- b) Geben Sie die Formel für die Spannung $U_C(t)$ an, die über dem Kondensator abfällt.
- c) Geben Sie die Formel für die Spannung $U_L(t)$ an, die über der Spule abfällt.
- d) Stellen Sie die Gleichung für die zeitabhängige Ladung auf. (Hinweis: Es handelt sich um eine Differentialgleichung!)
- e) Wählen Sie einen geeigneten Ansatz um diese Gleichung zu lösen. Berechnen Sie die Kreisfrequenz ω_0 .
- f) Vergleichen Sie den elektrischen LC-Schwingkreis mit dem mechanischen Feder-Masse-Schwinger, indem Sie die analogen elektrischen Größen für die mechanischen Größen Masse m, Federkonstante k, Ort x, Geschwindigkeit v, kinetische Energie E_{kin} und elastische Energie E_{elast} angeben.
- g) Berechnen Sie die maximale Stromstärke I_m .
- h) Geben Sie die Formel für die Zeitabhängigkeit der im Kondensator gespeicherten elektrischen Energie E_{elek} an.
- i) Geben Sie die Formel für die Zeitabhängigkeit der in der Spule gespeicherten magnetischen Energie E_{magn} an.
- j) Skizzieren Sie in einem Diagramm die Zeitabhängigkeit der elektrischen und magnetischen Energie.
- k) Berechnen Sie die Gesamtenergie in diesem LC-Stromkreis.
- I) Mit welcher Maßnahme können Sie die auftretenden Schwingungen dämpfen?


Fakultät Grundlagen

Sommersemester 2016		Blatt 2 (von 4)
Studiengang:	TIB2	Semester 2
Prüfungsfach:	Physik 2	Fachnummer: 1052010
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

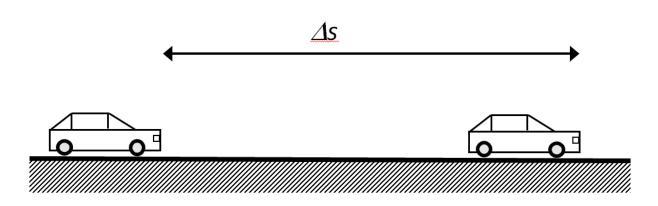
Aufgabe 2:

Hupe auf Drehscheibe

(22 Punkte)

Eine elektrische Hupe sendet Schallwellen (Schallgeschwindigkeit in trockener Luft bei T =20°C: c = 344 m/s) mit einer Frequenz $f_Q = 400$ Hz aus. Sie ist auf dem Umfang einer Drehscheibe mit dem Durchmesser d = 40 cm befestigt und bewegt sich mit der Winkelgeschwindigkeit $\omega = 25/s$. Der ruhende Beobachter hört die Hupe im Abstand x = 8m.

- a) Bestimmen Sie die maximale Schallfrequenz f_{max} , die der Beobachter hört.
- b) Bestimmen Sie die minimale Schallfrequenz f_{min} , die der Beobachter hört.


Der Beobachter verfügt darüber hinaus über ein elektronisches Schallmeßgerät, das eine Frequenzauflösung Δf_{mess} = 12 Hz hat, d.h es kann gerade noch zwei unterschiedliche Frequenzen mit dem Abstand Δf_{mess} trennen.

- c) Kann das ebenfalls ruhende elektronische Schallmeßgerät die von der Hupe ausgesendeten Schallfrequenzen auflösen?
- d) Was müsste am Experiment verändert werden, Differenz der um die Schallfrequenzen $\Delta f = f_{max} - f_{min}$ zu vergrößern?
- e) Welche minimalen und maximalen Schallfrequenzen berechnen Sie bei einer Frequenz der Hupe f_Q = 5000 Hz unter ansonsten identischen Bedingungen? Wie groß ist die resultierende Differenz der Schallfrequenzen $\Delta f = f_{max} - f_{min}$? Kann das elektronische Schallmeßgerät diese Differenz auflösen?
- f) Ab welcher Winkelgeschwindigkeit ω_c sollte ein Überschallknallen hörbar werden? Wieviel Prozent dieser Überschall-Winkelgeschwindigkeit hatte die anfängliche Winkelgeschwindigkeit $\omega = 25/s$?
- g) Allerdings ist dieser Fall wohl eher hypothetisch, welche denn Zentrifugalbeschleunigung ac wirkt beim Überschallknallen auf die Hupe? Um wieviel ist a_c somit größer als die Erdbeschleunigung g?

Fakultät Grundlagen

Sommersemester 2016		Blatt 3 (von 4)
Studiengang:	TIB2	Semester 2
Prüfungsfach:	Physik 2	Fachnummer: 1052010
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

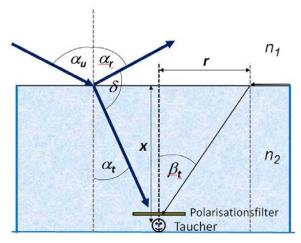
Aufgabe 3: Straßenkreuzung (14 Punkte)

An einer Straßenkreuzung rauscht der Verkehr vorbei. Der zeitlich gemittelte Schallpegel L ergibt sich aus der Zahl der Fahrzeuge ΔN , die pro Zeiteinheit Δt die Kreuzung passieren. Der mittlere Schallpegel steigt von L_1 = 68 dB bei normalem Verkehr auf L_2 = 80 dB zur Spitzenverkehrszeit.

a) Bestimmen Sie die damit verbundene Zunahme des Fahrzeugstromes $I = \Delta N/\Delta t$. Nehmen Sie dabei vereinfachend an, daß jedes Fahrzeug die gleiche Schallintensität emittiert.

der Straßenkreuzung wird nun eine Baustelle eingerichtet, wodurch Durchschnittsgeschwindigkeit von 50 km/h auf 30 km/h reduziert wird. Nehmen Sie hierbei Schallintensität einzelnen an, daß die eines Fahrzeugs Geschwindigkeitsreduktion nicht ändert, aber der mittlere Abstand ⊿s der Fahrzeuge sich um 40% reduziert.

- b) Welchen Schallpegel L₃ berechnen Sie an der Baustelle bei normalem Verkehr?
- c) Welchen Schallpegel L₄ berechnen Sie an der Baustelle zur Spitzenverkehrszeit?


Fakultät Grundlagen

Sommersemester 2016		Blatt 4 (von 4)
Studiengang:	TIB2	Semester 2
Prüfungsfach:	Physik 2	Fachnummer: 1052010
Hilfsmittel:	Manuskript, Literatur, Taschenrechner	Zeit: 90 Minuten

Aufgabe 4:

Was sieht der Taucher?

(19 Punkte)

Ein Taucher ist bei Sonnenschein auf den Boden eines Swimmingpools hinabgetaucht (siehe Abbildung). Beim Blick nach oben sieht er die Poolwände und direkt über sich in einem Kreis mit dem Radius r = 2.5 m den Taghimmel bzw. Objekte außerhalb des Wassers.

- a) Bestimmen Sie den Winkel der Totalreflexion β_t . Nehmen Sie dabei eine Brechzahl von Wasser $n_2 = 1.33$ bzw. Luft $n_1 = 1.00$ an.
- b) In welcher Tiefe x befindet sich der Taucher?

Der Taucher verfügt darüber hinaus über ein Polarisationsfilter, das er vor der Taucherbrille dreht. Dabei stellt er fest, daß das direkte Sonnenlicht im Wasser polarisiert ist. Danach taucht er auf und verläßt das Wasser. Nun mißt er durch Drehen des Polarisationsfilters die Polarisation des an der Wasseroberfläche reflektierten direkten Sonnenlichts als Funktion des Sonnenstands, d.h. des Winkels α_c

- c) Unter welchem Winkel α_r ist das an der Wasseroberfläche reflektierte direkte Sonnenlicht vollständig (linear) polarisiert?
- d) Wie groß ist dabei der Einfallswinkel α_u des direkten Sonnenlichts?
- e) Unter welchem Winkel α_t würde der Taucher dabei am Poolboden den transmitterten Sonnenstrahl beobachten? Ist dieser Strahl auch vollständig (linear) polarisiert?
- f) Wie groß ist dabei der Winkel δ zwischen transmittertem (α_t) und reflektiertem Sonnenstrahl (α_r)?
- g) Welche Ausbreitungsgeschwindigkeiten c_2 bzw. c_1 hat das Licht in Wasser bzw. in Luft?